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ABSTRACT

Recent studies show that a significant part of Internet traffic is de-
livered through Web-based applications. To cope with the increas-
ing demand for Web content, large scale content hosting and de-
livery infrastructures, such as data-centers and content distribution
networks, are continuously being deployed. Being able to identify
and classify such hosting infrastructures is helpful not only to con-
tent producers, content providers, and ISPs, but also to the research
community at large. For example, to quantify the degree of hosting
infrastructure deployment in the Internet or the replication of Web
content.

In this paper, we introduce Web Content Cartography, i.e., the
identification and classification of content hosting and delivery in-
frastructures. We propose a lightweight and fully automated ap-
proach to discover hosting infrastructures based only on DNS mea-
surements and BGP routing table snapshots. Our experimental re-
sults show that our approach is feasible even with a limited num-
ber of well-distributed vantage points. We find that some popular
content is served exclusively from specific regions and ASes. Fur-
thermore, our classification enables us to derive content-centric AS
rankings that complement existing AS rankings and shed light on
recent observations about shifts in inter-domain traffic and the AS
topology.
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1. INTRODUCTION

Today’s demand for Web content in the Internet is enormous, re-
flecting the value Internet users give to content [18]. Recent traffic
studies [15, 12, 22, 27] show that Web-based applications are again
very popular. To cope with this demand, Web-based applications
and Web content producers use scalable and cost-effective hosting
and content delivery infrastructures. These infrastructures, which
we refer to as hosting infrastructures throughout this paper, have
multiple choices on how and where to place their servers.

Leighton differentiates between three options for Web content
delivery [24]: (i) centralized hosting, (ii) data-center-based content
distribution network (CDN), (iii) cache-based CDNs. Approaches
(ii) and (iii) allow to scale content delivery by distributing the con-
tent onto a dedicated hosting infrastructure. This hosting infrastruc-
ture can be composed of a few large data-centers, a large number
of caches, or any combination. In many cases, DNS is used by the
hosting infrastructure to select the server from which a user will
obtain content [20, 37, 7, 30].

The deployment of hosting infrastructures is dynamic and flexi-
ble in multiple ways, e.g.: increasing the size of the existing host-
ing infrastructure, changing peerings with ISPs, placing parts of the
infrastructure inside ISP networks. Therefore, being able to iden-
tify and classify hosting infrastructures in an automated manner is a
step towards understanding this complex ecosystem, and an enabler
for many applications. Content producers can benefit from under-
standing the footprint of hosting infrastructures to place content
close to their customer base. For CDNs, a map of hosting infras-
tructures can assist them in improving their competitiveness in the
content delivery market. For ISPs, it is important to know which
hosting infrastructures deliver a specific content and at which loca-
tions to make relevant peering decisions. The research community
needs a better understanding of the evolving ecosystem of hosting
infrastructures, given its importance as a driver in the evolution of
the Internet.

As demand drives hosting infrastructures to make a given content
available at multiple locations, identifying a particular hosting in-
frastructure requires sampling its location diversity. Previous work
has attempted to discover specific hosting infrastructures in an ex-
tensive manner, e. g., Akamai [36, 35, 17]. Such studies rely on the
knowledge of a signature that identifies the target infrastructure,
e.g., CNAMEs in DNS replies or AS numbers. Labovitz et at. [22]
inferred that a small number of hosting infrastructures are responsi-
ble for a significant fraction of inter-domain traffic. Unfortunately,
this study observes only the traffic crossing AS boundaries, not traf-
fic delivered directly from inside the monitored ISPs. As a conse-
quence, important CDNs such as Akamai as well as data-centers
deployed inside ISP networks are under-represented.

In this paper, we introduce Web Content Cartography, i.e., the



identification and classification of hosting infrastructures. We pro-
pose a lightweight and fully automated approach to discover host-
ing infrastructures based on DNS measurements and BGP routing
table snapshots. Compared to previous work, our method is able
to identify and classify new as well as existing hosting infrastruc-
tures without the need of a priori knowledge of their operation or
deployment. To achieve such a degree of generality, we rely on the
information that hosting infrastructures expose to end-users when
requesting hostnames through DNS. We construct mappings be-
tween requested hostnames and IP addresses returned, and cluster
the hostnames into hosting infrastructures with the help of network
information such as IP addresses, prefixes and AS numbers.
Our contributions can be summarized as follows:

o [dentification of hosting infrastructures: We propose a
lightweight and fully automated approach to discover host-
ing infrastructures, based on DNS measurements and BGP
routing table snapshots.

o Classification of hosting infrastructures: We classify indi-
vidual hosting infrastructures and their different deployment
strategies based on their network and location footprint.

e Content replication: We quantify the degree of content repli-
cation in the Internet and its impact on local content avail-
ability in different regions of the world. We introduce the
content monopoly index that reflects the content an organiza-
tion hosts, either replicated or exclusively hosted.

e Revisiting AS rankings: We derive content-centric AS rank-
ings that complement existing AS rankings and shed light on
recent observations about shifts in inter-domain traffic and
the AS topology.

The remainder of this paper is structured as follows. We present
our methodology in Section 2 and discuss our measurements in
Section 3. In Section 4, we provide our results, and discuss the
implications of our work in Section 5. We present related work in
Section 6 and summarize the paper in Section 7.

2. METHODOLOGY

In this section we describe our approach to identify and classify
hosting infrastructures in the Internet. The key idea is to collect
the IP addresses that DNS returns for various popular and unpop-
ular hostnames from geographically diverse vantage points. We
use this information for several purposes: (i) to find the geographic
location where popular content is available from, (ii) to find the net-
work locations, e. g., prefixes and ASes, where content is available,
and (iii) to find out by which hosting infrastructure a hostname is
served.

2.1 Design Goals

To achieve our goals of mapping content and identifying host-
ing infrastructures, we design measurements tailored to our specific
needs: (i) we target the hosting infrastructures that host content and
(ii) we sample the network footprint of each of these hosting infras-
tructures in order to be able to classify them and study aspects such
as content replication. We now elaborate on our choices and ex-
plain why they ensure that our measurements allows us to achieve
the above goals.

Hosting Infrastructure Coverage.

To satisfy the first requirement, i. e., obtaining a wide coverage
of popular hosting infrastructures in terms of traffic volume, one
approach is to sample all possible hostnames. However, due to the
sheer size of the Web — an estimated 92 million active domains

only for the .COM top-level domain [6] — querying all host names
in the Internet would be way too cumbersome from a measurement
perspective. Fortunately, there is high variation in the popularity
of Web content. Given that Internet traffic at various levels of ag-
gregation is consistent with Zipf’s law [13, 40, 38, 10], the hosting
infrastructures that serve popular hostnames are likely to be respon-
sible for a major part of today’s Internet traffic. Despite a lack of
definitive figures about how many hosting infrastructures are re-
sponsible for most of the Web traffic, we believe that it is reason-
able to assume that a limited number of highly popular Web sites
is sufficient to cover the hosting infrastructures responsible for the
majority of the HTTP traffic in the Internet. For example, Akamai
claims to deliver about 20 % of the total Web traffic in the Inter-
net [30]. Labovitz et al. [22] attribute up to 10 % of all Internet
traffic to Google, more than 15 % to the top 10 hosting infrastruc-
tures and more than 40 % to the top 100.

Network Footprint.

The second goal—sampling the network footprint of hosting
infrastructures—asks for measurements from multiple vantage
points. By running measurements from vantage points that reside
in different networks and countries, we benefit from the way host-
ing infrastructures use DNS to select the server from which a user
obtains the requested content [20, 35, 36, 7]. CDNs rely on the
network location of the recursive DNS resolver to determine the IP
address returned by DNS [30, 28, 37]. In many cases, the host-
ing infrastructure assumes that the DNS resolver is close to the
client and optimizes based on this assumption. Therefore, to sam-
ple the locations from which a given hosting infrastructure serves
content, our approach relies on volunteers to sample from different
networks, ASes, and countries around the world.

2.2 Network Features

The way hosting infrastructures are deployed in the Internet is
not homogeneous. In Section 2.3 we leverage the “network foot-
print” of hosting infrastructures to map them. Now, we discuss fea-
tures that can be used to distinguish between different deployment
strategies of hosting infrastructures.

To this end, we extract the IP addresses obtained within the DNS
replies, from geographically dispersed vantage points. The set of
IP addresses returned for a particular hostname reveals the degree
to which the corresponding hosting infrastructure is network-wise
and geographically distributed. Hence, the natural choice for our
features are prefix, AS and location of an IP address. For example,
small data-centers will be located within a single AS in a single
geographic location, having a limited number of /24 subnetworks,
and a large number of IP addresses. A massively distributed CDN
will rely on multiple ASes. Evidently, these features are correlated,
and potentially differ in their power to discriminate between dif-
ferent types of hosting infrastructures. We leave this for further
investigation, and prefer to rely on all features for now.

Throughout the paper, we rely on both the granularity of BGP
prefixes as well as /24 subnetworks. /24 subnetworks have the ad-
vantage of better representing the actual usage of the address space
by highly distributed hosting infrastructures such as Akamai. BGP
prefixes on the other hand indicate at which granularity routing is
performed and more closely match the address space usage of cen-
tralized hosting infrastructures such as data-centers.

To determine the AS for a given IP address, we use BGP routing
information from RIPE RIS [4] and RouteViews [33], and assume
that the last AS hop in an AS path reflects the origin AS of the
prefix.

To infer the geographical location of an IP address, we rely on
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Figure 1: High level view of our approach.

the Maxmind geolocation database [29]. We are aware that geolo-
cation databases suffer from limited accuracy. However, they have
been shown to be reliable at the country-level [32].

2.3 Clustering Algorithm

Our goal is to detect where hosting infrastructures are located by
AS and country, and classify them according to their network foot-
print. The key idea is to cluster all hostnames that are served by the
same hosting infrastructure. To this end, we rely on the assumption
that each hostname is served by a single hosting infrastructure.

We are aware that counter-examples exist: Meebo, an instant
messenger aggregator, which is running its own meta-CDN, dis-
tributes the content demand across different CDNs by using a DNS
server under their control. Another case is Netflix, which offers
video-on-demand streams and relies on both Level 3 and Limelight.
Our approach accommodates such counter-examples by putting the
respective hostnames into separate clusters.

By examining the resolved CNAME records for various host-
names, it is sometimes already possible to identify the CDN
that delivers the respective content. For example, a CNAME to
akamai .net clearly points to the Akamai CDN. Yet, finding con-
tent providers would require an extensive a-priori database. In ad-
dition, some CDNs do not use CNAMESs, and CNAMEs are also
used in different contexts than CDNs. In contrast, our clustering
approach achieves the important goal of identifying hosting in-
frastructures in the wild, and could be used to help build such a
database. Moreover, our agnostic approach is able to separate host-
ing infrastructures if they are actually maintained by the same ad-
ministrative entity (e.g., the Akamai CDN), but treat various host-
names differently in terms of replication.

In the rest of the section we present our algorithm that identi-
fies hosting infrastructures based on our data. We choose a two-
step algorithm as depicted in Figure 1. During the first step, we
ensure that the prominent hosting infrastructures are identified. It
also gives an upper bound on the size of the clusters. In the second
step, the algorithm merges clusters that share network features. The
first step prevents the second one from clustering small hosting in-
frastructures with large ones. This may happen for example when
infrastructures share address space with others.

Step 1: Separating Large Hosting Infrastructures.

The goal here is to separate large hosting infrastructures from
the rest. We rely on three network-based features: (i) the num-
ber of IP addresses, (ii) the number of /24 networks and (iii) the
number of ASes a hostname is resolved to. We use the k-means
algorithm [26] to partition the hostnames in up to k clusters in the
feature space. The choice of the value of k is discussed at the end of
this subsection. Clusters whose features have high values relate to
widely-deployed infrastructures. On the other hand, smaller infras-
tructures that use very few /24 subnetworks and IP addresses are
not sufficiently different, and therefore, can be found in the same
cluster. Increasing the value of & in the clustering algorithm does
not lead to improvements, as the feature space simply does not al-
low to differentiate them.

Step 2: Distinguishing Small Hosting Infrastructures.

The pre-clustering of hostnames in Step 1 does not take into ac-
count the actual network locations from where content is served,
but only features that reflect the size of the hosting infrastructures.
The goal of the second step is to build sub-clusters within each
k-means cluster by identifying the hostnames that are hosted on
similar network locations in terms of IP address space. To this
end, we take into account the set of BGP prefixes the hostname
maps to. Based on the similarity between the sets of prefixes of
two similarity-clusters, we decide if they belong to the same host-
ing infrastructure, and if so we merge these clusters. For this, we
define the similarity between two sets s and sz as follows:
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similarity(si, s2) = 2
where |.| denotes the size of the set. The purpose of the factor 2 is
to stretch the image of the similarity function to the interval [0, 1].

The second step of the algorithm is performed for each k-means
cluster separately. Initially, we put each hostname contained in the
current k-means cluster into its own sub-cluster, called a similarity-
cluster. Then, we perform a pairwise comparison of all similarity-
clusters of the current k-means cluster and merge them according to
their similarity. We iterate the process until convergence to a fixed
point. At this stage, each similarity-cluster identifies all hostnames
used by a single content delivery infrastructure.

Tuning.

Generally, choosing k too high will lead to split large hosting
infrastructures into smaller clusters, while choosing it too low may
result in significant overlap between hosting infrastructures. As
part of our case study in Section 4 we examine how sensitive the
outcome of our clustering is to the choice of k. We find that the
whole interval 20 < k < 40 provides reasonable and similar
results according to our verification, and therefore we decide to
choose £ = 30. Extensive tests reveal that merging thresholds of
0.7 on the similarity between two similarity-clusters work well for
the second phase of the algorithm. We leave it for future work
to advance our clustering techniques and to optimize the choice
of parameters, and rather focus on the methodology for analyzing
hosting infrastructures in the following.

2.4 Metrics: Content Potential and Monopoly

Now, we propose metrics and rankings that allow us to compare
the obtained hosting infrastructures. We will use these metrics and
corresponding rankings later (Section 4) to get insight about the
geographic properties of content replication as well as the role of
different organizations in the hosting of Web content, e. g., which
organizations exclusively host content.

Content Delivery Potential.

Our goal is to provide intuition on the amount of content that is
available for download in a geographic region (e. g., country, conti-
nent) or an AS. To this end, we define the content delivery potential
as the fraction of hostnames that can be served from either a geo-



graphic region or an AS. Values close to 1 suggest that a major part
of popular content is available locally. The disadvantage of the con-
tent delivery potential is that replicated content is counted as many
times as there are different locations where it is hosted, introducing
a bias in favor of replicated content.

Normalized Content Delivery Potential.

Therefore, we introduce the normalized content delivery poten-
tial, which takes into account the total number of locations from
where content is available. Intuitively, a location does not exclu-
sively deliver content, if the content has been replicated to a large
number of locations. To take this into account, we calculate the nor-
malized content delivery potential of a hostname as follows. First,
we determine the weight of a hostname, which is 1 divided by the
number of all hostnames. Second, we check how many different
ASes, subnetworks, or regions serve this count, henceforth referred
to as replication-count. To assess the contribution of a particular
hostname to the normalized content delivery potential of an AS,
subnetwork, or region, we take the weight from the first step and
divide it by replication-count. The benefit of the normalized con-
tent delivery potential is a more balanced ranking in terms of hosted
content, as it spreads the weight of distributed content infrastruc-
ture across all ASes, regions, or subnetworks that serve their hosted
content.

Content Monopoly Index.

To distinguish between locations (ASes, geographic regions) that
have exclusive content and those that host replicated content, we
introduce the Content Monopoly Index (CMI). We define it as
the ratio between the normalized content potential and the non-
normalized content potential. An AS with a large CMI hosts a large
number of hostnames that are not available in another AS.

3. MEASUREMENTS

In this section we present our approach to collect traces, i. ., ac-
tive DNS measurements, in order to evaluate our methodology. To
achieve our goal of identifying hosting infrastructures we compile
a list of diverse hostnames and analyze DNS traces when resolving
these hostnames as collected by end-users in commercial ISPs. Our
experimental results advocate that our methodology is able to iden-
tify a significant fraction of hosting infrastructures network foot-
prints, even with a small number of well-distributed vantage points.

3.1 Hostname Selection

To obtain a good coverage of the largest hosting infrastructures,
we decide to include in our hostname list the top ranked ones ac-
cording to Alexa [1]. Alexa relies on statistical sampling and de-
termines its ranking by counting how many pages were visited by
Internet users who have downloaded their toolbar. Note, Alexa it-
self is already accounting for various sampling biases of its user
list'. In order to check for potential differences and to scrutinize
replication of content also for less popular hosts, we further add
hosts that are at the bottom of Alexa’s ranking.

Moreover, many web-pages contain embedded content, e. g., im-
ages, videos, and advertisements that the browser of the user has
to download from different servers. In our study, such embedded
content has to be taken into account, as it might be served from
servers other than those serving the front page of a popular host-
name. To give an example, the front page of facebook.com is
served from Facebook datacenters, but the logo and other embed-
ded objects such as the profile photo is served from the Akamai

"http://alexa.com/help/traffic_learn_more

content distribution network. In addition, to increase the chance
of detecting the relevant infrastructures, we extracted hosts that are
likely to be hosted on hosting infrastructures from the ranks 2001
to 5000 of the Alexa list. We identify such hosts by checking if
they have CNAME records in their DNS answers.

Overall, we keep the 2,000 most popular and 2,000 from the least
popular hostnames according to the Alexa ranking. Moreover, we
include more than 3,400 embedded hostnames and 840 hostnames
because of CNAMEs. This list leads to four subsets which we will
refer to as TOP2000, TAIL2000, EMBEDDED, and CNAMES, re-
spectively, for the remainder of the paper. Note, that several host-
names are used to deliver both embedded objects as well as pop-
ular websites. This leads to an overlap of 823 hostnames between
TOP2000 and EMBEDDED.

3.2 Measurement Approach

Our measurement approach relies on volunteers to run a program
that is publicly available for download on our project web-page
along with instructions on how to perform the experiment. We
initially announced the project during the IMC 2010 conference.
In addition, we made a public call in several DNS-related mailing
lists and invited friends to participate. This resulted in a total of
484 traces. Participants in our study run the program locally on
their end-hosts. The program queries the locally configured DNS
resolver, a Google Public DNS resolver and an OpenDNS resolver
for the list of over 7400 hostnames, and stores the full DNS replies
in a trace file. The traces collected with our program do not inter-
act with any of the browsing or download history and activity of
the user.

In addition to the DNS data, we collect meta-information that
helps in sanitizing the measurement and in debugging. We report
the Internet-visible IP address of the client every 100 DNS queries
by asking a web-server running a custom script, and store informa-
tion such as the operating system and the timezone, as well as the
IP addresses of the DNS resolvers in use.

To sanitize the measurements, we check that the locally config-
ured resolver is not a 3rd-party resolver such as Google Public DNS
or OpenDNS. This information cannot always be derived from the
resolver IP address, as the recursive resolver may hide behind a
DNS forwarding resolver. Therefore, we perform queries for 16 ad-
ditional names to domains under our administrative control. Their
authoritative name servers are configured to reply to queries with
the IP address of the querying resolver. This gives us the IP ad-
dresses of the resolvers directly, without having to further correlate
logs from our authoritative name servers with the traces. To avoid
receiving cached copies of the entries, we construct the names on-
the-fly with the help of microsecond resolution timestamps and the
Internet-visible IP address of the client.

The program is designed to collect all of the above data once
every 24 hours, and write it to a trace file, until stopped by the user.
This implies that there may be multiple traces per vantage point.
We identify vantage points through the information contained in
the trace files as well as meta information provided by the end-user
running the program when uploading the trace files.

3.3 Data Cleanup

We perform a thorough cleanup process on the raw traces. We
check for the following measurement artifacts.

We do not consider traces if the vantage point roams across ASes
during the experiment, as we cannot determine the exact impact of
the change. If the DNS resolver of the host returns an excessive
number of DNS errors, or is unreachable, we do not consider the
trace. If the DNS resolver of the host is a well-known third-party
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Figure 2: /24 subnetwork coverage by the hostname list.

resolver, e. g., OpenDNS, Google Public DNS, we do not consider
the trace. We showed in previous work that using third-party re-
solvers introduces bias by not representing the location of the end-
user [7].

When a vantage point provides us with repeated measurements
over time, we only use the first trace that does not suffer from any
other artifact to avoid over-representing a single vantage point. This
is important to avoid bias when quantifying the content potential
(cf. Section 2.4).

After removing all traces with the above artefacts, we have 133
clean traces that form the basis of this study Note, the cleanup pro-
cess has limited impact on our hosting infrastructure coverage and
sampling of the network footprint.

3.4 Data coverage

We next investigate the coverage that our hostnames and vantage
points provide.

3.4.1 Network and Geographic Footprint of Vantage
Points

‘We map the IP addresses of vantage points of the 133 clean traces
to ASes and countries using the mapping methodology described in
Section 2.2. This leads to a coverage of 78 ASes and 27 countries
that span six continents. Our experiments include traces from major
residential ISPs, e. g., AT&T Internet Services, Comcast, Verizon,
Road Runner, Telefonica, Deutsche Telekom, British Telecom as
well as smaller residential ISPs and some university and research
networks.

3.4.2 Network Coverage by Hostname

Previous studies [17, 35, 36] were able to achieve an exhaustive
coverage for a limited number of well known hosting infrastruc-
tures. In our study, we strive to achieve a wide coverage of the
prevalent hosting infrastructures without targeting a-priori known
hosting infrastructures. Thus, we investigate the scope of the net-
work coverage of our study. For this, we analyze to which degree
replies for different parts of our hostname list result in different
network coverage. To identify the IP ranges utilized by hosting in-
frastructures we aggregate the returned IP addresses over /24 sub-
networks. We argue that this is the right granularity as hosting in-
frastructures tend to deploy server clusters for resilience and load
balancing. Aggregation on the prefix of the returned IP addresses
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Figure 3: /24 subnetwork coverage by traces.

may lead to overestimation of the coverage, yet another indication
why aggregation on /24 subnetworks is justified.

Figure 2 shows the total number of discovered /24 subnetworks
when we stepwise add hostnames from our list (see Section 3.1)
according to their utility. By utility we mean the number of new /24
subnetworks that are discovered by a hostname. The y-axis shows
the total number of discovered /24 subnetworks as a function of the
number of traces considered on the x-axis. In addition to the full
list, we differentiate between three types of hostnames introduced
in Section 3.1: TOP2000, TAIL2000, and EMBEDDED.

The curves in Figure 2 can be separated into three regions: a
steep slope on the left, followed by a region with a slope of 1, and
a flat region at the end. The steep slope region identifies hostnames
with a high utility. These hostnames should be included to discover
a significant fraction of the content infrastructure with limited prob-
ing effort. The region having a slope of 1 results from hostnames
that positively contribute to the coverage but the utility is much
lower than hostnames on the left. The third and flat region corre-
sponds to hostnames that return redundant information about the
hosting infrastructure, compared to the first two regions.

Let us now turn to the pairwise comparison of the three types of
hostnames. While the hostname lists of TOP2000 and TAIL2000
are of equal size, the /24 subnetworks observed by TOP2000 and
TAIL2000 exhibit a difference by a factor of more than two in the
number of subnetworks they uncover. This unveils that popular
content is served from more widely distributed hosting infrastruc-
tures than this of less popular content. Most of the difference in the
cumulative utility between TOP2000 and TAIL2000 stems from a
small number of popular hostnames. Furthermore, we observe that
the hosting infrastructures that serve hostnames in EMBEDDED are
well distributed.

To estimate the utility of additional hostnames we calculate the
median utility of 100 random hostname permutations. We find that
when adding the last 200 hostnames, the average utility is 0.65 /24
subnets per hostname, and 0.61 /24 subnets when adding the last
50 hostnames.

3.4.3 Network Coverage by Trace

Hosting infrastructures rely on geographic hints to serve content
from servers close to the end user [24, 30]. We expect that traces
in diverse regions of the world sample different parts of the host-
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ing infrastructures. Therefore, we address now the utility of traces
obtained from different vantage points.

Figure 3 displays the number of discovered /24 subnetworks
of hosting infrastructures when we stepwise add traces from our
dataset, see Section 3.2. The x-axis indicates the number of used
traces while the y-axis shows the cumulative number of /24 subnet-
works that can be identified based on these traces. The four curves
of Figure 3 provide the results for different sequences in which we
stepwise add traces: to obtain the curve with the black circles, we
add in each step the trace that adds most additional /24 subnetworks
to the set of already identified subnetworks (“Optimized”). In ad-
dition to the optimized cumulative utility (black circles) Figure 3
shows the maximum, median, and minimum cumulative utilities
for 100 random permutations of the 133 traces.

In total, we find more than 8000 /24 subnetworks that are uti-
lized by hosting infrastructures. We observe that every trace sam-
ples about half of these subnetworks (4800). About 2800 of these
subnetworks are found in all traces. This relatively high fraction
of common subnetworks among traces is the consequence of our
choice of hostnames. It is not biased towards any given hosting
infrastructure.

To estimate the potential benefits by including additional vantage
points, we study the slope of the median curve (green crosses). Ex-
trapolating the utility of the last 20 traces yields approximately ten
/24 subnetworks per additional trace.

Furthermore, we notice that the traces that provide the highest
utility (traces corresponding to the leftmost side in Figure 3), are
actually located in different ASes and countries. For example, the
first 30 traces belong to 30 different ASes in 24 different countries.
The first 80 traces belong to 67 different ASes and 26 countries.
This highlights the importance of utilizing vantage points that are
geographically diverse and are hosted in different ASes.

To better understand both the need for diversity in vantage points
as well as the underlying reasons behind the limited additional net-
work coverage of hosting infrastructures by each trace, we perform
a direct comparison of the traces. For this we re-use the similarity
concept defined by Equation 1. For the same hostname, we define
the /24 subnetwork similarity between two DNS replies as the sim-
ilarity between their respective sets of /24 subnetworks. For two
traces, we define their similarity as the average of /24 subnetworks
similarities across all hostnames.

In Figure 4 we show the cumulative distribution of the similar-
ity across all pairs of traces (TOTAL). We also show the similarity
across traces when considering only one of the three subsets of the
hostname list (EMBEDDED, TOP2000, TAIL2000). The high base-
line value of similarity (always above 0.6) highlights the need for
diversity to sample hosting infrastructures. It also confirms the slow
increase in the utility of the traces shown in Figure 3.

As expected, the similarity for TAIL2000 is very high, indicat-
ing the limited location diversity for the corresponding hosting in-
frastructure. This is contrasted with the similarity for EMBEDDED,
that is the lowest among the four curves. A low similarity for EM-
BEDDED is the consequence of the nature of the corresponding ob-
jects: typically they have a long lifetime and often are large. This
makes them prime candidates for being hosted on distributed in-
frastructures, e. g., CDNs. TOP2000 lies in-between TAIL2000 and
EMBEDDED. This indicates that the corresponding hostnames are
hosted on a mix of centralized and distributed hosting infrastruc-
tures.

3.4.4 Summary

Our choice of a mix of different hostnames enables us to esti-
mate the effect of our hostname list on sampling hosting infrastruc-
tures. Popular hostnames and embedded objects contribute most
to discovering networks used by hosting infrastructures. Overall,
studying data coverage we find that our set of popular and embed-
ded hostnames is unlikely to miss large hosting infrastructures. The
diversity of vantage points in terms of geographic and network lo-
cation, however, is crucial to obtain good coverage.

4. RESULTS

In this section we examine our data set. First, based on the IP ad-
dresses we investigate where content can be obtained from. Next,
we apply our clustering algorithm to characterize the resulting host-
ing infrastructure clusters. We gain insight on the deployment and
hosting strategies of different infrastructures. We utilize our insight
to derive content-centric AS-rankings and compare them with ex-
isting ones.

4.1 A Continent-level View of Web Content

Before delving into characteristics of hosting infrastructures, we
want to understand which parts of the world serve Web content.
In this section we choose the granularity of a continent, for two
reasons: (i) the results directly reflect the round trip time penalty
of exchanging content between continents, and (ii) our sampling is
not dense enough to support country-level statistics. We quantify
to which degree a user can find content in her own continent. This
provides a view on the relative importance of different continents
for Web content delivery as well the degree of replication of con-
tent.

4.1.1 Geographic Replication of Content

We first examine the relationship between the locations of con-
tent requester and content location as identified by DNS answers.
We focus on TOP2000 in this section, and compare with other con-
tent types in the following section. Each line of Table 1 summarizes
requests that originate from a given continent. Columns of Table 1
break down the requests among the continents from which the re-
quested hostname is served. Each line adds up to 100 %, while
columns do not as they reflect the global importance of a continent.
The shade of each entry of Table 1 is a visual aid, directly indicating
its value (the darker the higher is the value).

At least 46 % of the popular hostnames can be served from North
America, 20 % from Europe and 18 % from Asia. The other three



Requested Served from

from Africa Asia Europe N. America Oceania S. America
Africa 03 18.6 320 0.3 0.8
Asia 03 260 20.7 0.3 0.8
Europe 03 18.6 (322 0.2 0.8

N. America| 0.3 18.6 20.7 0.2 0.8
Oceania 03 208 205 59 0.8

S. America | 02 18.7 20.6 0.2 10.1

Table 1: Content matrix for TOP2000. Each line provides the
percentage of all requests that originate from a given content.
Columns indicate the continent from where content is served.

Requested Served from

from Africa Asia Europe N. America Oceania S. America
Africa 03 269 355 35.8 0.3 0.6
Asia 03 379 183 40.1 1.1 0.6
Europe 03 268 356 35.6 0.4 0.6

N. America| 0.3 265 184 |52 0.3 0.6
Oceania 03 1292 185 38.7 11.3 0.6

S. America | 0.3 264 182 39.3 0.3 14.2

Table 2: Content matrix for EMBEDDED. Each line provides the
percentage of all requests that originate from a given continent.
Columns indicate the continent from where content is served.
The diagonal is more pronounced than for ToP2000 (Table 1).

continents, namely Africa, Oceania, and South America, do not
appear to serve a lot of popular hostnames.

Another observation from Table 1 is a strong diagonal in the ma-
trix, indicating that at least part of the hostnames are fetched from
the same continent. Subtracting the minimum of a column from the
corresponding element in the diagonal reveals that up to 11.6 % of
the hostname requests are served from their own continent. This
locality of hostnames availability provides evidence that a consid-
erable fraction of content is replicated in different regions of the
world. Note, by choosing the granularity of countries, the existing
diversity within continents is hidden. In addition, we observe an
almost identical behavior for hostnames requested from Africa and
Europe. Two factors are likely to cause this behavior: (i) a limited
number of traces from Africa and (ii) the fact that Internet connec-
tivity in Africa is mostly provided via Europe coupled to the lack of
local content replication infrastructure. Oceania and Asia localize
to a lesser degree than either Europe or North America.

4.1.2 Content-dependent Replication

Content varies in both popularity and type. This is the reason
why we distinguish not only popular and less popular hostnames,
but also different types of embedded objects (see Section 2). In this
section, we refine the previous analysis of the relationships between
the locations of content requester and content origin by comparing
with the other two subsets of hostnames: TAIL2000 and EMBED-
DED.

Surprisingly, the content delivery matrix for TAIL2000 (not
shown) is almost identical to the one for TOP2000 (Table 1). The
largest difference is a stronger concentration towards North Amer-
ica, with up to 1.4 % points higher entries for TAIL2000. This in-
dicates that the degree to which replicated hosting infrastructures
are used in TOP2000 and TAIL2000 is very similar. How does that
relate to the fact that top content has a far better utility in sam-
pling large amounts of the address space than TAIL2000, cf. Sec-
tion 3.4.27 The hosting infrastructures of highly popular content

Rank | #hostnames | #ASes |#prefixes owner content mix
1 476 79 294 Akamai | \
2 161 70 216 Akamai | |
3 108 1 45 Google |
4 70 35 137 Akamai | N I
5 70 1 45 Google (Il N
6 57 6 15 Limelight |l
7 57 1 1 ThePlanet | S
8 53 1 1 ThePlanet |HEY I
9 49 34 123 Akamai | NN |
10 34 1 2 Skyrock OSN |1
11 29 6 17 Cotendo |
12 28 4 5 Wordpress |l I
13 27 6 21 Footprint |
14 26 1 1 Ravand | |
15 23 1 1 Xanga
16 22 1 4 Edgecast
17 22 1 1 ThePlanet | EEEEENY I
18 21 1 1 ivwbox.de
19 21 1 5 AOL I
20 20 1 1 Leaseweb | I

Table 3: Top 20 hosting infrastructure clusters by hostname
count. The order of bars in the content mix column is: |l only
on TOP2000, i both on TOP2000 and EMBEDDED, | only on
EMBEDDED, and l TAIL2000.

are distributed to a larger degree within each continent, when com-
pared to hosting infrastructures predominantly used for less popular
content.

When comparing the matrix of EMBEDDED (Table 2) with the
others (TAIL2000 not shown, TOP2000 in Table 1), we observe
that the diagonal is more pronounced for EMBEDDED. This in-
dicates that embedded objects are, on a continent-level, more lo-
cally available than content from the other sets. We notice that
Asia appears stronger for EMBEDDED compared to TOP2000 and
TAIL2000, while North America appears weaker.

4.1.3  Summary

In this section, we analyzed the relative weights of Web con-
tent in different continents. We showed the prevalence of North
America, Europe, and Asia in Web content presence, and how each
region relies on each other. We observed a considerable local avail-
ability of content in most continents, implying that a considerable
fraction of content is replicated across multiple continents.

4.2 A Portrait of Hosting Infrastructures

We turn our attention to the independent hosting infrastructures
that are serving the hostnames from our list. In this section we
identify the prominent hosting infrastructures, detect where they
are actually located by AS and country, and classify them accord-
ing to their network location footprint. Moreover, we study the geo-
graphic properties of hosting infrastructures and provide a ranking
of countries according to their capability of serving popular Web
content.

4.2.1 Clustering Validation

As first step, we validate the output of our algorithm of Sec-
tion Section 2.3. Table 3 presents the top 20 clusters by hostname
count. We find out by manually cross-checking that, indeed, all
top 20 clusters correspond to networks that host large amounts of
content.

Moreover, we leverage additional information about the Akamai
and Limelight hosting infrastructures. In the case of Akamai we
know the names present in the A records at the end of the CNAME
chain inside DNS replies, which follow typical patterns. In the
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Figure 5: Number of hostnames served by different hosting in-
frastructure clusters.

case of Limelight, we can use the same approach, and also verify
that IP addresses belong to the AS number of Limelight. Scrutiniz-
ing this additional source of information, we find a few hostnames
that are not included in the top clusters of Table 3. Typically, such
hostnames are only available at a very small subset of the whole
infrastructure, and are therefore separated in the first step of the
clustering algorithm (Section 2.3) due to their unusual features. We
conjecture these hostnames are intentionally treated differently by
the hosting infrastructures.

4.2.2  Clustering Results

Overall, the output of our algorithm leads to the identification
of more than 3000 potentially distinct hosting infrastructures. Fig-
ure 5 shows, for each hosting infrastructure cluster, the number of
hostnames from our list that are served by the hosting infrastruc-
ture of that cluster, on a log-log scale. Hosting infrastructure clus-
ters are ranked in decreasing order of hostname count. We observe
that a few hosting infrastructure clusters are serving a large number
of hostnames. Most of the hosting infrastructure clusters serve a
single hostname. Hosting infrastructure clusters that serve a single
hostname have their own BGP prefix. We infer that these are likely
to be located in a single facility and in most of the cases serve
non-replicated content. The top 10 largest hosting infrastructures
clusters are serving more than 15 % of the hostnames from our list.
The top 20, still less than 1 % of all clusters, are serving about 20 %
of the hostnames.

The resulting clustering allows us to make qualitative observa-
tions, namely that well-known hosting infrastructures are repre-
sented. Table 3 lists the top 20 clusters in terms of the number
of hostnames from our list. Among them, we find well distributed
CDNs such as Akamai, “hyper-giants” such as Google, and data-
centers, such as ThePlanet. Note the different deployment strate-
gies as coined by Leighton [24].

As can be seen in Table 3, we find multiple hosting infrastructure
clusters run by the same infrastructure authority. Possible expla-
nations include the observation that different types of services are
hosted by hosting infrastructures, the geographic disparity of the
infrastructure deployment, and acquisition or mergers. For Akamai
and Google, the network footprints of their clusters are different

enough to be separated by the k-means step (first step) of the clus-
tering algorithm (Section 2.3), while the ThePlanet clusters are only
separated by the similarity step (second step).

For Akamai, the top two clusters have about twice as many
locations as the other two clusters. Further investigation reveals
that the first two Akamai clusters correspond to servers in the
akamai.net second level domain (SLD), and the latter two are
hosted on servers in the akamaiedge .net SLD.

Similar observations are made for the two Google clusters. The
cluster with rank 3 is used for the standard Google services includ-
ing Web search and the YouTube front page. The hostnames in
this cluster are served from more than 200 IP addresses. The clus-
ter with rank 5 hosts doubleclick.net, googleapis.com,
blogspot.com, and several other Google related SL.Ds, which
are served by 40 to 130 IP addresses each.

For ThePlanet, hostnames rarely map to more than one IP ad-
dress. The clusters only emerge in step 2 of the clustering algo-
rithm (Section 2.3), because the content is hosted on different BGP
prefixes.

In addition, Table 3 shows the content-mix that is hosted on dif-
ferent hosting infrastructure clusters as bar-plot. We add CNAMES
(which come out of the Alexa Top 5000) to TOP2000 and report
it as top content. In addition, we separate hostnames which are
on both TOP2000 and EMBEDDED into a category of its on, top
and embedded, to facilitate the interpretation of the content mix
bar-plot. The order of the categories in the bar-plot (cf. caption
of Table 3) is crafted to allow visually adding content of the top
and embedded category to either the TOP2000 or the EMBEDDED
category.

As expected, embedded content is prevalent on the top host-
ing infrastructures. Several hosting infrastructure clusters even al-
most exclusively serve embedded content, e.g., Limelight, Sky-
rock, Xanga, Edgecast, and the ad-service ivwbox.de. On oth-
ers, €. g., the Akamai clusters, the first Google cluster, and AOL,
top content accounts for a large fraction of the served hostnames.
Some hosting infrastructure clusters serve mainly tail content, e. g.,
Wordpress, ThePlanet, and the second Google cluster. This may
appear surprising at first, but it is a result of content consolida-
tion. For example, blogs hosted by Google and Wordpress can be
found amongst this content. This highlights how helpful less popu-
lar content can be in identifying and classifying the hosting infras-
tructures. The above mentioned results show that separating the
hosting infrastructure of certain organizations into multiple clus-
ters is both justified and necessary, because the infrastructures are
not used homogeneously [30].

4.2.3 Geographic Deployment of Hosting Infras-
tructures

The clustering of the hosting infrastructures presented in the pre-
vious section is agnostic with respect to geographic locations. To
provide insight about the geographic deployment of the different
clusters as well as to better understand the degree of co-location
in the content infrastructure, we map the clusters to the geographic
locations of their prefixes.

Distinguishing between content infrastructures that rely on a few
ASes or prefixes is tricky, especially because we do not have a pri-
ori knowledge about their signature in terms of ASes and prefixes.
Indeed, some of these clusters might very well be present in a sin-
gle location but for administrative reasons split their infrastructure
into multiple ASes or use multiple prefixes due to multi-homing.
One known example is Rapidshare [8], that relies on multiple ASes
and prefixes yet whose facility is a single data-center.

Therefore, we estimate the number of countries in which a host-
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Figure 6: Country-level diversity of content infrastructure
clusters.

ing infrastructure cluster is present based on geolocation informa-
tion. For each cluster we check onto how many countries it is de-
ployed. Figure 6 shows the resulting relationship in the form of a
stacked bar-plot. On the x-axis, we show the number of ASes in
which clusters are discovered. We annotate the number of different
clusters found for a given number of ASes in parenthesis. On the
y-axis, we show the fraction of clusters whose prefixes are located
in a given number of countries (see legend).

As shown in Figure 6, most of the hosting infrastructure clusters
that use a single AS are present in a single country. As a cluster’s
footprint is on more ASes, the likelihood that it is present in multi-
ple countries increases. At the same time, a significant fraction of
hosting infrastructure clusters using multiple ASes are located in a
single country. Because of the limited number of content infrastruc-
ture clusters located in 5 or more ASes (33 clusters), the fraction
for these clusters in Figure 6 simply reflects a few instances of par-
ticular hosting infrastructures. Most of these clusters are present in
several countries, thus, are probably CDNs.

4.2.4  Summary

In this section, we used our clustering algorithm to identify host-
ing infrastructures based on network features. We validate our clas-
sification based on additional information for two large CDNs. We
present evidence of how Akamai and Google slice up their host-
ing infrastructures for different hosting purposes, and show which
content is hosted on which hosting infrastructures. We distinguish
between smaller hosting infrastructures based on both their features
and their geographic deployment. We find a relationship between
the number of ASes on which a hosting infrastructure is present
and the multiplicity of its locations, giving a hint about their de-
ployment strategy.

4.3 Mapping Hosting Infrastructures

To find out the geographic location of the hot-spots that serve
most hostnames from our list, we compute both content potentials
on a per country basis. Table 4 shows the results for both poten-

Rank  Country Potential ~ Normalized potential
1 USA (CA) 0.254 0.108
2 China 0.128 0.107
3 USA(TX) 0.190 0.061
4 Germany 0.183 0.058
5  Japan 0.163 0.051
6  France 0.146 0.034
7  Great Britain 0.157 0.030
8  Netherlands 0.144 0.029
9 USA (WA) 0.135 0.027

10 USA (unknown) 0.164 0.027
11 Russia 0.038 0.027
12 USA (NY) 0.130 0.026
13 Ttaly 0.122 0.018
14 USA (N)) 0.125 0.016
15 Canada 0.028 0.015
16 USA (L) 0.116 0.014
17 Australia 0.118 0.013
18  Spain 0.116 0.013
19 USA (UT) 0.111 0.012
20 USA (CO) 0.113 0.012

Table 4: Geographic distribution of content infrastructure,
ranked by the normalized potential.

tials. Note, for the USA only, we provide the state level. The lines
of Table 4 are ranked by decreasing normalized content delivery
potential and show the top 20 hosting infrastructures.

Despite the division into states, the USA leads the ranking with
its hosting infrastructure in California. Indeed, in total 9 US states
are among the top 20. On the second place we find China. Di-
rectly comparing California with China reveals that China’s deliv-
ery potential is a lot lower than California’s, yet the values of their
normalized potential are quite close. Comparing China’s poten-
tial with its normalized potential indicates that a large fraction of
the content served from China is only available in China. In total,
China and California together count for over 23 % of hostnames
of our list in the normalized potential. Besides USA and China, 7
European countries are among the top 20, as well as Japan, Aus-
tralia and Canada. In total we see content being delivered from
122 countries/US states, or 77 countries. The top 20 countries/US
states presented here are responsible for 70 % of all hostnames in
our study.

4.4 Revisiting AS Rankings

Geographic hot-spots are insightful in that they reflect where
large chunks of the hosting infrastructures are. However, they pro-
vide little insight to understand how content is delivered to Internet
users. Therefore, we investigate where content resides at the AS-
level.

To map hosting infrastructure clusters to ASes, we rely on the
same approach as in Section 4.2.3. For each cluster, we take the
prefixes from which it serves content, and map each prefix to an AS
number using BGP data. This gives us a set of AS numbers for each
cluster. Recall that a hosting infrastructure cluster is defined by a
set of hostnames it serves. We reuse the notion of content delivery
potential, as introduced in Section 2.4, but where “locations” are
now ASes. The content delivery potential of an AS is the fraction
of hostnames it can potentially serve from all the clusters that are
hosted on this AS.

Figure 7 provides the top 20 ASes in terms of their content de-
livery potential. Unexpectedly, we find mostly ISPs in this top 20.
Note that the CMI (cf. Section 2.4) is very low for all the top ranked
ASes. The two genuine content hosters in the list are Akamai and
Bandcon. There are two main factors explaining the unexpected top
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Rank  AS name CMI
1 NTT America 0.070
2 Tinet 0.029
3 Global Crossing 0.034
4 KDDI 0.025
5  Akamai Europe 0.019
6  TeliaNet Global 0.027
7  Deutsche Telekom 0.033
8 Korea Telecom 0.030
9 Qwest 0.036
10 Bandcon 0.045
11  Cable and Wireless 0.021
12 SingTel Optus 0.019
13 Akamai 0.018
14 France Telecom - Orange  0.017
15  Internode 0.017
16  Comcast 0.017
17  StarHub 0.018
18 nLayer 0.020
19 Beyond The Network 0.018
20 TATA 0.023

Figure 7: Top 20 ASes in content delivery potential.

20: (i) all these ASes host Akamai caches that boost their content
delivery potential and (i) all these ASes host some content that no
other AS can provide. Given the widespread deployment of Aka-
mai caches in carriers, the second factor is actually more important
and explains why some ASes appear among the top and why others
do not. A content-centric AS-ranking should be able to cope with
the bias introduced by the deployment of highly distributed hosting
infrastructures within ASes.

An AS-ranking based on the normalized content delivery poten-
tial does exactly this. It spreads the weight of distributed content
infrastructure across all ASes that serve their hosted content. Fig-
ure 8 provides the top 20 ASes in terms of normalized content de-
livery potential. Our first observation is that the only overlap with
the non-normalized ranking is NTT. The ASes that appear on the
top of the normalized ranking do so because of the exclusiveness
of the content they host as reflected by their CMI values. As ex-
pected, Google is among the top ranked ASes due to its importance
in popular content. We also see data-center content infrastructures:
ThePlanet, SoftLayer, Rackspace, 1&1 Internet, OVH, Amazon,
Leaseweb, and Hetzner Online. A limited number of ISPs in China
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Rank  AS name CMI
1 Chinanet 0.699
2 Google 0.996
3 ThePlanet.com 0.985
4 SoftLayer 0.967
5 Chinal69 Backbone 0.576
6 Level 3 0.109
7  China Telecom 0.470
8  Rackspace 0.954
9 1&I1 Internet 0.969
10 OVH 0.969
11  NTT America 0.070
12 EdgeCast 0.688
13 GoDaddy.com 0.969
14 Savvis 0.785
15  Chinal69 Beijing 0.706
16  Amazon.com 0.895
17 LEASEWEB 0.942
18  Cogent 0.687
19  Hetzner Online 0.962
20 AOL 0.932

Figure 8: Top 20 ASes in normalized content delivery potential.

seem to have a monopoly on a considerable fraction of popular
content.

When comparing the normalized potential for all hostnames with
TOP2000 and EMBEDDED, two more ASes enter the picture, Abit-
cool China and China Networks Inter-Exchange. In addition, slight
re-rankings can be observed.

4.4.1 Content vs. Traditional AS Rankings

Many topology-driven rankings have been proposed [5, 22, 3, 2].
In this section we compare content-based rankings, described in the
previous section, with topology-driven ones. Among the most well-
known AS rankings are two from CAIDA [5]: one based on AS-
degree and another on the size of the customer cone of an AS. Fixed
Orbit [2] calculate an the Knodes Index, a centrality based metric.
Labovitz et al. [22] provide an AS ranking based on the amount of
traffic by monitoring inter-domain traffic from 110 ASes.

Table 5 compares seven different AS rankings: the CAIDA AS-
degree (CAIDA-degree) and customer cone (CAIDA-cone) rank-
ings [5], a ranking similar to CAIDA’s by Renesys (Renesys) [3],
the Knodes Index (Knodes) as reported by Fixed Orbit [2], the traf-



Rank | CAIDA-degree CAIDA-cone Renesys Knodes Arbor Potential Normalized potential
1 Level 3 Level 3 Level 3 Level 3 Level 3 NTT Chinanet
2 Cogent/PSI AT&T Global Crossing Cogent Global Crossing Tinet Google
3 AT&T MCI Sprint Global Crossing Google Global Crossing ThePlanet
4 MCI Cogent/PSI NTT Sprint * Deutsche Telekom SoftLayer
5 Hurricane Global Crossing Savvis Tinet * KDDI Chinal69 backbone
6 Qwest Sprint TeliaSonera NTT Comcast Telia Level 3
7 Sprint Qwest Tinet AT&T * Akamai Rackspace
8 Global Crossing | Hurricane Electric Verizon Swisscom * Bandcon China Telecom
9 tw telecom tw telecom AT&T Hurricane * Cable and Wireless 1&1 Internet
10 INIT7 TeliaNet China Telecom Telia * Qwest OVH

Table 5: Topology-driven AS rankings against traffic-driven and content-based AS rankings.

fic exchanges-based ranking by Labovitz et al. [23]* (Arbor), and
finally our content-based rankings (potential and normalized poten-
tial). The purely topological rankings like the ones from CAIDA
and Renesys tend to rank large transit carriers high. Besides the
case of Google and Comcast, the top of Arbor’s ranking leads to
similar results to topological rankings. Our content infrastructure-
driven rankings on the other hand give more weight to those ASes
that deliver a large amount of content. We notice that our normal-
ized potential leads to similar top ranked ASes as topological and
traffic-based rankings, while of course favoring ASes that host con-
tent.

We argue that no AS ranking captures all relevant aspects of the
importance of an AS. All aspects of the Internet are important, i.e.,
topology, traffic, and content, and need to be taken into considera-
tion to understand the Internet ecosystem.

4.4.2 Summary

We proposed two different ways to rank ASes based on their
content potential. We showed that these rankings reveal different
aspects of content hosted by ASes: replicated content and content
exclusively hosted by a given AS. We proposed an index, called the
content monopoly index, which measures the degree to which an
AS hosts content not available elsewhere, compared to content that
is replicated in other ASes. Finally, we related our content-centric
rankings to those presented in the literature.

S. DISCUSSION

The deployment of hosting infrastructures is dynamic in multi-
ple ways, e. g., by growing their existing infrastructure, by chang-
ing their peerings with ISPs, or by placing part of the infrastructure
inside ISP networks. Our methodology is an automated tool that
makes it possible to monitor the state of hosting infrastructures de-
ployment in the Internet at a given point in time. Given the chang-
ing nature of the hosting infrastructures ecosystem, as observed by
Labovitz et al. [22], it is important to have tools that allow the dif-
ferent stakeholders in the Internet to better understand the space in
which they evolve.

With the commoditization of the content delivery and hosting
landscape, content producers have more and more choice as to
where they can place their content, for example to better target their
user base. With the rise of user-generated content, e. g., through
Facebook, Twitter, and YouTube, content producers also need to
deliver a mix of different media for which multiple suitable content
delivery platforms might be available. Meta-CDNs such as Meebo,
an instant messenger aggregator, or Conviva®, a video delivery plat-
form, distribute the content demand across different CDNs. To un-

2Some of the entries of the Arbor ranking were intentionally omit-
ted by [22].

*http://www.conviva.com/

derstand the trade-offs involved in their business decisions, content
producers need to be able to measure the actual server diversity vis-
ible to different users from different places in the world, as well as
the performance delivered by different CDNs. Our work is a step
in this direction.

Given the already wide deployment of hosting infrastructures
around the world, existing and new CDNs need to understand the
marginal utility of deploying more infrastructure. Indeed, competi-
tion among CDNs is intense, and exacerbated by the fact that ISPs
have already deployed and are deploying more hosting infrastruc-
tures inside their network. The recently created Content Delivery
Networks Interconnect (CDNi) [25] working group at the IETFE,
aimed at standardizing interconnection between CDNs, is a proof
of the maturity of the CDN market that now considers collabora-
tion.

Some ISPs nowadays deploy their own CDN, data-centers,
caches, or even CDN boxes such as those from Akamai. The in-
creased availability of content caching and hosting with ISP net-
works further complexifies the current and future hosting infras-
tructures landscape. With the significant server diversity from
which a given content can be obtained [31], both outside and inside
their network, the traffic engineering task of ISPs is becoming even
more challenging. Separating intradomain traffic engineering from
peering engineering is indeed becoming less and less relevant. ISPs
need to think globally about the network and understand what con-
tent can be obtained from where before making traffic engineering
and peering decisions. Web content cartography, combined with
a better understanding of content delivery performance, can help
ISPs to an adequate strategy to deliver content to their customers.

It is worth mentioning the critical role of virtualization for host-
ing infrastructures. Virtualization is one of the highly disruptive en-
ablers that we believe will change the hosting infrastructures land-
scape in the near-future. Indeed, virtualization technology offers
flexibility that can be exploited by content producers and providers,
as well as ISPs, to dynamically move content. By exploiting virtu-
alization, we expect to see a hosting infrastructures market that is
richer, that better utilizes the available resources, and better serves
end-users. Virtualization has both a positive and a negative impact
on Web content cartography. On the negative side, the use of vir-
tualization, together with collaboration between CDNs and meta-
CDNs, will pose challenges to Web content cartography. On the
positive side, it will make it more necessary to keep track of the
dynamic mapping of content onto hosting infrastructures.

The research community also needs an understanding of the
evolving ecosystem of hosting infrastructures, given its importance
as a driver in the evolution of the Internet. In light of the recent ob-
servations by Labovitz et al. [22] that showed significant changes in
the whole Internet ecosystem, it is important for the research com-
munity to be able to foresee the impact of hosting infrastructures to
work on the most relevant technical challenges that the future Inter-



net may face. Our work is a first step in the direction of creating a
comprehensive map of the whole Internet ecosystem that includes
hosting infrastructures. A map of hosting infrastructures combined
with a corresponding view of the paths (and their performance) to
the end-users, would constitute a significant step forward in our
understanding of Internet content delivery.

6. RELATED WORK

Our work on Web content cartography is motivated by recent
studies that provide evidence in support of the significant rise of
Web content traffic [15, 12, 22, 27]. Two major reasons are the
growth of video traffic and the increasing penetration of broadband
access. To cope with these changes, large-scale content distribution
networks are being deployed [24, 30]. In addition, applications,
such as file sharing, that used to rely on peer-to-peer delivery are
nowadays increasingly served from data-centers [21], or One-click
Hosters [8].

Labovitz et al. [22] observed consolidation of Web content traf-
fic as well as a significant shift in peerings to better facilitate con-
nectivity to content providers. They analyzed inter-domain traffic
over a two year period, relying on data from 110 commercial ISPs
and content providers. They detect global shifts in inter-domain
traffic and the AS ecosystem. Our approach is complementary and
focuses on hosting infrastructures, not inter-domain traffic. The ad-
vantage of our approach is our extensive coverage of popular host-
ing infrastructure, whose importance may be underestimated when
analyzing only inter-domain traffic. For example, a significant frac-
tion of the traffic delivered by a highly distributed infrastructure
such as Akamai as well as data-centers located within ISPs, does
not cross AS boundaries.

Shue et al. [34] observed, by looking at the .com and .net
domains, that a vast majority of Web servers are co-located. Our
results, on a more diverse set of domains, confirm that there is co-
location of servers as well as hosting infrastructures.

Huang et al. [17], Su et al. [35], and Triukose et al. [36] lever-
age DNS requests to understand the distribution of Web content.
However, their work is restricted to the study of specific CDNs,
and does not try to detect different types of hosting infrastructures.
Utilizing DNS replies of popular content in order to identify the
location of hosting infrastructures shares similarities with work by
Ager et al [7], by Krishnamurthy et al [20], by Feldmann et al. [14],
and by Chang et al. [9]. Yet, their focus was on studying the per-
formance of DNS resolvers [7, 20] or on deriving empirical models
of inter-domain traffic matrices [14, 9], rather than leveraging DNS
for Web content cartography.

Other approaches have been proposed to identify hosting infras-
tructures. Gill et al. [16] performed traceroutes towards large host-
ing infrastructures from distributed vantage points. They relied on
DNS resolution from a single vantage point inside a university, pro-
viding a limited view of the network footprint of hosting infrastruc-
tures. Recently, Wang et al. [39] proposed a measurement method-
ology to estimate the distance between end-users towards two large
CDNs. They rely on embedded measurement scripts within multi-
ple websites and collect the measurements performed by the end-
users. Our approach differs in that we do not require the targeted
hosting infrastructure to be known a priori.

Clustering has been used in the past in different contexts, e. g., to
group end-users from the perspective of routing [19] or DNS reso-
lution [11]. Our approach does not focus on clustering of end-users,
but rather on the identification and clustering of hosting infrastruc-
tures in the Internet.

7. CONCLUSION

In this paper, we introduce Web content cartography. We propose
a lightweight and fully automated approach to discover Web con-
tent hosting and delivery infrastructures based only on DNS mea-
surements and BGP routing table snapshots. To the best of our
knowledge this is the first attempt to identify hosting infrastruc-
tures based on DNS replies and routing information, rather than
relying on pre-identified signatures such as CNAMES. The advan-
tage of this method is that is general enough to identify new hosting
infrastructures as well as cluster them based on their operation as
revealed by DNS.

Our results show that by utilizing traces from a small number of
well distributed vantage points it is possible to make qualitative ob-
servations for the deployment of hosting infrastructures and content
replication. A key insight of our study is that a significant fraction
of the content is exclusively delivered by hosting infrastructures
such as Google or geographical regions, e. g., China. Furthermore,
by deriving content-centric AS rankings that complement existing
AS rankings we shed light on recent observations about shifts on
the AS topology.

Our work is an important step towards answering crucial ques-
tions for content producers, content providers, ISPs, and the re-
search community. For ISPs, knowing the locations from which
popular content can be obtained is a key factor in peering de-
cisions and network dimensioning. For content producers, geo-
graphic and network footprint of a CDN is an important factor in
choosing how to deliver content best to their customer base. For
content providers, Web content cartography can help them improve
their competitiveness in the content delivery market. Moreover,
the research community needs to understand and track the evolv-
ing ecosystem of hosting infrastructures, given their importance as
a driver in the evolution of the Internet. Web content cartography
is complementary to other maps of the Internet, e. g., router-level
and AS-level maps, and enables further investigation of the shap-
ing forces of the Internet. In particular it will allow researchers to
investigate the interplay of content infrastructures with the Internet
topology.
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