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ABSTRACT 

In professional search environments, such as patent search or legal 

search, search tasks have unique characteristics: 1) users 

interactively issue several queries for a topic, and 2) users are 

willing to examine many retrieval results, i.e., there is typically an 

emphasis on recall. Recent surveys have also verified that 

professional searchers continue to have a strong preference for 

Boolean queries because they provide a record of what documents 

were searched. To support this type of professional search, we 

propose a novel Boolean query suggestion technique. Specifically, 

we generate Boolean queries by exploiting decision trees learned 

from pseudo-labeled documents and rank the suggested queries 

using query quality predictors. We evaluate our algorithm in 

simulated patent and medical search environments. Compared 

with a recent effective query generation system, we demonstrate 

that our technique is effective and general.   

Categories and Subject Descriptors 

H.3.3 [Information Storage and Retrieval]: Information Search 

and Retrieval – Query Formulation, Search Process. 

General Terms 

Algorithms, Experimentation. 

Keywords 

Boolean query suggestion, prior-art search, patentability search. 

1. INTRODUCTION 
Query suggestion is an effective and practical way to help users 

formulate queries [15, 16]. While there have been many studies on 

how to provide alternative queries in general web search [15, 16], 

little work has been done about suggestion for domain-specific 

search, e.g., patent retrieval, legal search, and medical information 

search. Many of the users in such domains are search 

professionals, e.g., patent examiners and information specialists in 

companies and law firms, who perform specialized search tasks 

such as prior-art search and legal discovery. Query suggestion 

techniques should be designed for the unique search 

characteristics of these domains. For example, professional search 

is typically more recall-oriented than consumer search. In the 

patent validity task, for example, patent examiners formulate 

search queries from a new patent to validate its patentability, and 

generally spend about 12 hours to complete a single task by 

examining approximately about 100 patent documents retrieved 

by 15 different queries on average [1]. Another typical 

characteristic of professional search is the need to document the 

searches that are carried out.  

For a number of reasons, both historic and technical, Boolean 

queries are particularly common in professional search. For 

example, in patent search, recent surveys [1, 2] revealed that the 

use of Boolean operators is one of the most important features to 

formulate effective queries from the perspective of patent 

professionals. Also, according to [2], most patent professionals 

who participated in the survey did not regard query term 

weighting and query expansion as important whereas 96.3% of 

participants agreed that Boolean operators are necessary. This is 

not because Boolean queries are the most effective. In fact, a 

number of studies over the years (e.g., [5, 6, 7, 9, 11]) have shown 

that “keyword” queries are often significantly more effective. 

Boolean queries, however, are easy for information professionals 

to manipulate and are essentially self-documenting in that they 

define precisely the set of documents that are retrieved. 

Despite the importance of Boolean queries in professional search, 

there has not been much research on helping information 

professionals formulate those queries. Tseng and Wu [3] indicated 

that the provision of suggested search vocabulary would be 

helpful in patent search. Other studies on prior-art search that 

automatically generate queries from patent text (e.g., [6, 7]) did 

not investigate Boolean query suggestion. Current government or 

commercial patent search systems 1  used by information 

professionals all support Boolean queries but not query suggestion.  

In this paper, we propose a method to suggest Boolean queries for 

professional search. We define a Boolean query as the sequence 

of terms associated by conjunction (AND) where each term can be 

prefixed by negation (NOT). Although the OR operator is often 

used by professionals to indicate synonym groups, the retrieval 

evidence shows that AND and NOT have much more impact on 

effectiveness in domains such as patent search with very detailed 

documents (e.g., [4]). Adding synonym structure is left for future 

work. Although the suggested Boolean queries can be generated 

and used with any search engine, we use a simple statistical 

Boolean retrieval model for our experiments (explained in Section 

5). We do not adopt any additional query processing and term 

weighting because those features are not generally preferred by 

professionals and not supported by commercial search systems. 
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In order to suggest Boolean queries, we first focus on generating 

Boolean queries that describe the content of an initial set of 

retrieved documents. We then rank the generated queries to place 

effective (in terms of finding more relevant documents) queries at 

higher ranks. In other words, our system performs two sub-tasks: 

1) Boolean Query Generation, and 2) Boolean Query Ranking. In 

the first task, we extract queries composed of Boolean operators 

and various terms, representing a pseudo-relevant document set, 

i.e., the top-k documents retrieved by a baseline system. To do 

this, we learn a decision tree from the pseudo-relevant documents 

so that the decision tree can determine whether a document is 

pseudo-relevant or not. Afterwards, each positive decision rule 

(i.e., a path from the root to a positive leaf node indicating 

pseudo-relevance) formulates a Boolean query. Our Boolean 

query generation process based on decision trees has two 

advantages: i) a (binary) decision tree can be equivalent to a 

Boolean function in terms of its expressiveness [20], and ii) 

decision trees naturally determine the number of query terms. 

In the next step, among the many generated Boolean queries, we 

select the effective ones by ranking them. This is consistent with 

typical query suggestion techniques used in web search, where the 

“best” suggestions are presented to the user. We learn to rank the 

generated queries using various quality predictors proposed for 

adhoc retrieval [21, 22, 23, 24, 25] and several new features that 

consider unique properties of Boolean queries. 

We show the effectiveness of our Boolean query suggestion 

system by verifying that the system is capable of generating 

effective Boolean queries at high ranks. Although our focus is on 

patent search, we show the generality of our approach through 

additional experiments with a medical literature database. 

The rest of this paper is organized as follows. In Section 2, we 

outline previous work in query suggestion and generation, and 

describe the limitations of previous work. Section 3 defines the 

task of Boolean query suggestion for professional search, and we 

present the methods we used in Section 4. Section 5 contains the 

experimental results and discussion. Finally, we summarize the 

contributions of our research and future work in Section 6. 

2. RELATED WORK AND LIMITATIONS 
In this section, we explore previous work for query suggestion for 

web search and query generation.  

Automatic query expansion [13] has been intensively researched 

to bridge the gap between users’ queries and relevant documents. 

In particular, pseudo-relevance feedback [12] is known as one of 

the most effective techniques. Although many successful query 

expansion techniques have been proposed (e.g., [13, 14]), most of 

them are not easily applicable to our tasks because they are not 

able to generate Boolean queries required for professional search 

environments. However, the query expansion method proposed by 

Mitra et al. [13] is strongly related to our work because they 

addressed the effectiveness of Boolean filters to improve precision 

of automatic query expansion. Specifically, they manually 

formulate fuzzy Boolean operators (conjunction and disjunction) 

and select expanded terms from a set of pseudo-relevant 

documents refined by the Boolean filters. However, their work is 

limited in that the Boolean filters are manually constructed while 

we focus on automatic formulation. Moreover, they did not 

consider Boolean queries. 

Jones et al. [17] proposed a query substitution system that 

suggests strongly related queries identified from user query 

sessions. In query reformulation, Wang and Zhai [18] discovered 

associated terms from query logs to substitute the original query 

terms or add new terms into an original query. Also, query 

recommendation techniques proposed in [16] provide alternatives 

by clustering related queries in query logs, and White et al. [15] 

studied types of query suggestions for web search preferred by 

users via a user study. While the query logs and session 

information that most previous techniques depend on are readily 

available for web search, such resources are mostly not available 

in domain-specific search environments that we address.  

In patent search, although automatic query generation is crucial, 

most previous work has focused on improving a retrieval model. 

The participants in the patent retrieval task of NTCIR-6 [8] used 

terms from claim sections without term selection. Mase and 

Iwayama [9] added terms from abstract sections into claim-based 

queries and weighted the query terms by their TF-IDF scores in 

the query patent. Xue and Croft [6, 7] described a query 

generation technique for patent search. In [6], they generated a 

patent search query by selecting an effective section and 

extracting the top-ranked words from the section using TF-IDF 

weights. Their finding is that the “brief summary” section of 

patents can produce the most effective queries, while weighting 

query words by term frequencies is more effective than TF-IDF 

weighting. They also expanded search queries to incorporate noun 

phrases, but the improvement was not significant. In [7], they 

improved retrieval performance of queries generated from [6] by 

using a learning-to-rank model and various features. The queries 

generated by this approach, however, contain many terms that are 

weighted and have other constraints, making them unsuitable for 

query suggestion. Similar to the NTCIR workshop, TREC 

recently proposed the Chemical track. A sub-task of the track 

addresses search for chemical patents [10]. Though Gobeill et al. 

[11] considered query expansion and showed the best 

performance among the participants, their expansion technique is 

somewhat limited in that it depends on a concept identifier and 

external resources (PubChem2) which would not be applied to 

general patents. 

The Boolean query suggestion approach is based on our previous 

work with professional searchers and studies such as Bache and 

Azzopardi [4]. They pointed out that patent searchers are in favor 

of exact-match models, i.e., traditional Boolean retrieval, because 

Boolean models can improve the retrievability of target 

documents. Accordingly, they proposed hybrid retrieval models in 

which target patents are ranked by TF-IDF or Okapi BM25 

models and then filtered by conjunctive and disjunctive Boolean 

operators (AND and OR). Though their models are empirically 

effective, those are limited in using only two-word queries, i.e., 

two words are associated by conjunction or disjunction.     

In the medical domain, Hashmi et al. [19] developed a system to 

generate context-specific queries from clinical guidelines, but they 

also used an external knowledge base to create query terms. 

3. PROBLEM FORMULATION 
In this section, we formulate the Boolean query suggestion 

problem for professional search and define associated terms. 
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Definition 1 (Professional Search): Professional search is 

interactive information retrieval performed by professionals in a 

specific domain such as the patent or medical domain. The main 

difference of this task from adhoc retrieval (e.g., web search) is 

that professional search tends to be recall-oriented. The search 

behavior of professionals is quite different from that of general 

users. For example, since professionals tend to prefer finding 

more relevant documents to finding a small number of relevant 

documents at the top ranks, they examine more retrieval results 

than web search users. Accordingly, search processes are often 

long and repeatable, e.g., a patent examiner issues several queries 

until the obtained results are satisfactory.  

Definition 2 (Topic): A topic is a subject for which queries 

against search engines are formed and the retrieval results are 

examined by professionals. For example, in prior-art search, a 

new patent to be validated can be a topic. In the medical domain, 

a description of patient symptoms can be a topic. 

Definition 3 (Boolean Query): A Boolean query is a sequence of 

query terms all of which are connected by conjunction and each of 

which can be prefixed by negation, e.g.,         ⋀        
⋀            . In this work, as query term candidates, we 

consider bigrams as well as unigrams.   

Definition 4 (Pseudo-Relevant Documents): Pseudo-relevant 

documents are the top k documents retrieved by a baseline system. 

The baseline system can handle a weighted or expanded query 

using a state-of-the-art retrieval model. We exploit the pseudo-

relevant documents to formulate Boolean queries that are 

suggested to users.  

Definition 5 (Boolean Query Generation): Boolean query 

generation is formulating Boolean queries from a set of query 

term candidates. Using terms appearing in a set of pseudo-relevant 

documents for topic, we formulate Boolean queries that consist of 

effective terms and Boolean operators (AND and NOT), where 

query term candidates can be unigrams or bigrams extracted from 

the pseudo-relevant documents. 

Definition 6 (Boolean Query Ranking): Boolean query ranking is 

determining a preference among generated Boolean queries for a 

topic with respect to a recall metric, e.g., recall at 100 (R@100). 

This is necessary for suggesting a reasonable number of effective 

Boolean queries (e.g., 5~10) to users because many queries can be 

generated in the Boolean query generation phase. We produce a 

ranked list of generated Boolean queries where an effective 

Boolean query should be placed within the high ranks (e.g., top 

10). 

4. BOOLEAN QUERY SUGGESTION 
In this section, we first propose a decision tree-based method for 

Boolean Query Generation, and then describe a Boolean Query 

Ranking model using various query quality predictors. Figure 1 

demonstrates the overall process of our system. In Boolean Query 

Generation, we train decision trees using the baseline retrieval 

result (containing the top-k pseudo-relevant documents and 

beyond-k non-relevant documents) and formulate corresponding 

Boolean queries (BQs) (details in Section 4.1). In Boolean Query 

Ranking, the ranking model trained from sorted lists of BQs with 

respect to R@100 can rank the generated BQs by query quality 

predictors (details in Section 4.2). The top ranked queries are 

presented as suggestions. 

4.1 Decision Tree-based Boolean Query 

Generation 
Binary decision trees are equivalent representations of Boolean 

functions [20]. If we could train a decision tree where a node 

corresponds to a term appearing in training documents in order to 

determine whether a document is relevant to a topic, the learned 

decision tree could imply a Boolean query representing a set of 

relevant documents. In addition, the length and query terms of a 

Boolean query are naturally determined by the depth and the 

nodes of the tree with reasonable accuracy. A problem, however, 

is that we do not have training data to learn a tree which can be 

generalized for every query because each query is associated with 

a different set of terms. So, instead of relevant documents, we use 

pseudo-relevant documents defined in Section 3 as training data. 

In other words, we learn a decision tree by using the top-k 

documents as positive examples. As negative examples, 

presumably non-relevant documents (ranked beyond-k in the 

baseline retrieval result) are used. Accordingly, Boolean queries 

generated from the positive nodes of the learned decision tree are 

expected to be as effective as the baseline query because the 

decision tree is learned from the pseudo-relevant documents. 

Once we learn a decision tree from a topic, we identify a single 

path from a root to a positive leaf node in the decision tree and 

convert the rule (path) into a Boolean query. Accordingly, a 

decision tree produces as many Boolean queries as the number of 

positive leaf nodes. Figure 2 depicts how to generate Boolean 

queries from an example decision tree whose attributes (query 

term candidates) are alloy, wheel, and steel, and True/False 

values of each leaf node denotes a positive/negative decision for 

input documents. For example, a document including alloy and 

wheel is classified as True (or relevant) because a number of 

pseudo-relevant examples used for training include the two terms. 

That is, the path from alloy to the first True leaf can formulate 

query Q1, which is expected to retrieve documents containing 

alloy and wheel. Since we concentrate on conjunction and 

negation, we generate two queries, Q1 and Q2, rather than a single 

unified query such as (     ⋀     ) (      ⋀      )  Note 

that AND and NOT have more impact on the effectiveness and Q1 

or Q2 is empirically better than the unified query w.r.t R@100 that 

we use to evaluate a Boolean query. 

Figure 1: Boolean Query Suggestion System Workflow. 



We describe the Boolean Query Generation algorithm used for the 

example in the following. Figure 2 shows the process of 

generating Boolean queries from several sets of query term 

candidates (i.e., attributes), a set of pseudo-relevant documents 

(the top-k baseline retrieval results) and a set of non-relevant 

documents (the beyond-k baseline retrieval results). To produce a 

sufficient number of Boolean queries (among which we can find 

many effective Boolean queries), for each topic, we train several 

decision trees with different attributes, while all the trees are 

trained by the same training set. In this, the training set includes 

the k positive (pseudo-relevant) documents and an equal number 

of negative instances (non-relevant) for a topic. To obtain N sets 

of attributes, various approaches (e.g., thesaurus and concept 

identification) can be used. In this paper, we change the number 

of query term candidates in each set to get multiple attribute sets. 

For the patent search experiments, in this paper, we select query 

term candidates from a unigram language model estimated from a 

topic patent (i.e., new patent) or its pseudo-relevant patent set. We 

first select unigrams which are likely to be generated from the 

following language models, assuming that terms are effective for 

retrieving pseudo-relevant patents if the terms frequently occur in 

the topic patent or pseudo-relevant patents. 

 ( | )  
  (   )

| |
 

 ( |    )  
∑   (    )       

∑ |  |       
 

where   is topic patent,      is the set of pseudo-relevant patents  

for topic,   (    ) indicates a term frequency of a word w in a 

document   , and |  | denotes the length of   .  

Stop-words3 are removed. Using term probabilities, we can rank 

terms in a topic document or pseudo-relevant documents. We 

select the top-m terms as attributes for decision trees. In particular, 

to obtain multiple sets of attributes, we consider 20 different m’s 

(in {5,10,…,100}) , each of which makes an attribute set. 

In addition, from an observation that patents contain many 

compound words that may help to improve the retrievability, we 

can add an equal number of bigrams into each set of selected 

unigrams. To rank bigrams, we estimate smoothed bigram 

language models for the topic patent and the pseudo-relevant 

patent set as follows: 

 (      | )  (   )
  (        )

| |   
   (  | ) 

                                                                 

3 Stop-words contain articles, prepositions, acronyms (e.g., fig.), 

(relative) pronouns, and general nouns (e.g., method, figure, and 

apparatus), frequently appeared in patent documents (available 

at http://www.cs.umass.edu/~yhkim/).  

ALGORITHM Boolean Query Generation 

INPUT:  

 N different sets of attributes s.t. {              
    + where      is a set of query term candidates 

 The baseline retrieval results for a topic, B 

OUTPUT: A set of Boolean queries, S 

PROCESS: 

 Initialize    * + 
 For i = 1,…,N 

 Construct training data from B: the top-k 

documents (positive examples) and k documents 

randomly selected from the beyond-k (negative 

examples) 

 Train a decision tree using the training data and 

     as attributes.  

 Find paths from the root to every positive leaf 

node in the decision tree and formulate 

corresponding Boolean queries. 

 Append the Boolean queries to S. 

 End For 

 Return S 

Figure 3: Boolean Query Generation Algorithm. 

 (       |    )  (   )
∑   (         )       

∑ |  |          

   (  |    ) 

where   is a bias to unigrams. We set   to 0.7 and eliminate 

bigrams which contain any stop-word. 

For the medical search experiments, we use the same setting 

except that we use only pseudo-relevant documents because topic 

documents are not usually given. In addition, since long Boolean 

queries may not return any retrieval results, we eliminate Boolean 

queries which contain more than 15 terms. 

4.2 Boolean Query Ranking 
To select a reasonable number of effective queries from a pool of 

generated Boolean queries, we propose a Boolean query ranking 

model and introduce features for the model. 

4.2.1 Learning-to-Rank Boolean Queries 
In order to rank generated Boolean queries, we learn a ranking 

function which predicts the preference between Boolean queries. 

That is, given a topic and generated Boolean queries, our ranking 

model produces a ranked list of the Boolean queries in descending 

order of recall at 100 (R@100). To do this, we use ranks by 

R@100’s of the Boolean queries generated for each topic as target 

values to be predicted. The formal definition of this model is 

given as follows. 

Suppose that   *          + is a set of ranks, where l denotes 

the number of ranks, and we can order the ranks            
where   indicates the preference between two ranks. For training, 

a set of topics   *          + is given and each topic    is 
associated with     *                (  )+ a set of Boolean 

queries, where  (  )  means the number of generated Boolean 

queries for    and a list of labels    *               (  )+ each of 

which       indicates the rank of each Boolean query, BQij, in 

  . A feature vector      (       )    is generated from each 

topic and Boolean query pair. We can represent a set of training 

examples as   *(         )+   
 . 

Figure 2: Decision Tree-based Boolean Query Generation. 
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A ranking function        maps a feature vector associated 

with a Boolean query to a score for the query. Specifically, this 

model generates a permutation of integers spanned in ,   (  )- 
for a topic, the corresponding Boolean query list, and the ranking 

function f. The permutation  (      ) is defined as a bijection 

from *       (  )+  to itself where      is identified by an 

integer of ,   (  )-  and  ( )denotes the position of     . The 

model is learned to minimize a loss function which is defined by 

the disagreements between permutation  (      ) and rank list yi 

for every training topic. 

For learning, we use Ranking SVM [26]. In contrast to Boolean 

Query Generation where only pseudo-relevance is considered, we 

use real relevance judgments to compute R@100 of training 

examples for Boolean Query Ranking. This is because Boolean 

Query Ranking uses generalizable features while Boolean Query 

Generation uses terms which strongly depends on topics. 

4.2.2 Features 
In order to compose a feature vector for our query ranking model, 

we leverage features from previous studies for predicting query 

performance [21, 22, 23]. Previous studies (e.g., [24, 25]) proved 

that query quality predictors are effective for ranking sub-queries. 

Since generated Boolean queries also consist of subsets of terms 

in topic documents (e.g., query patents), we can expect those 

quality predictors also help to recognize effective Boolean queries. 

However, we additionally use more features specialized for our 

task because we observed that Boolean queries often show 

different characteristics from adhoc queries. Accordingly, we 

categorize our features into two groups, General Query Quality 

Predictor and Boolean Query Quality Predictor. Table 1 

summarizes the features in each group. 

General Query Quality Predictors contain features proposed by 

previous studies for quality prediction of adhoc queries. As shown 

in Table 1, these features include QCS, QS, SOQ, SCQ, IDF, and 

ICTF. Since Boolean queries show different aspects from adhoc 

queries for which those features have been proposed, we need to 

adjust the way these features are computed. For example, since 

adhoc queries do not contain negation (e.g.,        ) in contrast 

to a Boolean query, we consider terms associated only with 

conjunctions. SOQ measures cosine similarity between a Boolean 

query and the baseline query while QS is computed only within 

pseudo-relevant documents, not within the whole collection 

because we aim to generate Boolean queries to retrieve pseudo-

relevant documents. For IDF, ICTF, and SCQ, as [24] did, we 

calculate the sum, the standard deviation, the ratio of the 

maximum to the minimum, the maximum, the arithmetic mean, 

the geometric mean, the harmonic mean, and the coefficient of 

variation of each value of a query term. These modified rules are 

applied to both unigrams and bigrams. 

Boolean Query Quality Predictors are features with the purpose 

of estimating Boolean query quality. All these features except 

BQTF are related to the retrieval results of a Boolean query 

because comparing a Boolean query result with the baseline result 

is a simple and effective way to predict Boolean query quality. 

BQCB is the ratio of the number of documents retrieved by both a 

Boolean query and the baseline system to the number of 

documents retrieved by the baseline system. This feature denotes 

how many of the documents retrieved by the baseline system can 

be found by a Boolean query. BQS is a measure of the number of 

pseudo-relevant documents retrieved by a Boolean query relative 

Table 1: Two categories of Ranking Features. 

General Query Quality Predictors 

QCS Query Clarity Score [21] 

QS Query Scope [23] in pseudo-relevant patents 

SOQ Similarity to Original Query [24] 

SCQ Similarity Collection Query [22] 

IDF Inverse Document Frequency 

ICTF Inverse Collection Term Frequency [24] 

Boolean Query Quality Predictor 

BQCB 
Boolean Query result Coverage of  

Baseline retrieval results  

BQS Boolean Query Scope in pseudo-relevance 

LBQR Length of Boolean Query Result  

BQTF 
Boolean Query Term Frequency in  

pseudo-relevant documents 

to the whole size of pseudo-relevant documents, i.e., k. This 

feature helps to assure the effectiveness of a Boolean query. 

LBQR measures the number of retrieved documents for a Boolean 

query. Since we found that an effective Boolean query sometimes 

returns a shorter result list containing highly relevant documents 

than the baseline result, we consider this feature as a signal to find 

such Boolean queries. BQTF counts the frequency of a 

conjunctive query term in pseudo-relevant documents, assuming 

that a frequent term in pseudo-relevant documents might be 

effective for retrieving the documents. Note that we do not 

consider negation terms because they rarely appear in pseudo-

relevant documents. Besides, for BQTF, the same statistics as 

used for IDF are calculated. 

Overall, a feature vector contains 37 different feature values (from 

10 different types). 

5. EXPERIMENTS: Professional Search 

Simulation 
We evaluate our Boolean query suggestion system by simulating 

professional search. We first describe how to set up experiments 

to simulate search processes and then provide experimental results 

and discussion with Boolean query examples. 

5.1 Experimental Setup 
To perform decision tree learning, the C4.5 algorithm4 was used, 

with pruning turned on to obtain more accurate trees. For Boolean 

Query Ranking, SVMrank 5 is used as a learning-to-rank algorithm, 

and 10-fold cross-validation is performed. Queries and documents 

are stemmed by the Krovetz stemmer. More details are provided 

as follows.    

5.1.1 Search Tasks 
We setup experiments for two different search tasks considering 

two domains of interest: the patent and medical domains. Our task 

for the patent domain is patentability search which aims to find 

prior patents which may conflict with a new patent. On the other 
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hand, the search task for the medical domain is reference retrieval 

upon the request of disease information that the patient is 

undertaking. Both tasks are known to be recall-oriented. 

5.1.2 Assumptions for Simulation  
We suggest Boolean queries to help professionals formulate 

queries. In order to demonstrate the practical effectiveness of our 

system, we test our system under the following assumptions. First, 

we assume that professionals directly use suggested Boolean 

queries without reformulation because we want to show the lower 

bound of performance that our system can achieve. In real 

environments, professionals may use our suggestions or formulate 

new Boolean queries based on the suggestions. Second, we 

assume that the searchers will examine a maximum of the top 100 

of every Boolean query result since 100 patents on average are 

examined in real examination processes as reported in [1]. 

5.1.3 Collections  

Experiments are conducted on two different collections, patents 

and medical documents. As a patent corpus, we use USPTO 

(United States Patent and Trademark Office) patents provided by 

NTCIR-6 [8]. The collection contains 981,948 patents published 

from 1993 to 2000. To develop topics (new patents), we randomly 

selected 100 patents published in 2000, ensuring that their 

citations list more than 20 patents and at least 90% of them are 

included in the test collection. As done in the TREC chemical 

track [10] and NTCIR-6 [8], we considered patents cited in each 

topic patent as “relevant”. We call this collection USPAT. For a 

medical corpus, we used the OHSUMED collection [27] which 

consists of 348,566 medical references (documents) and 106 

queries (topics). This test collection contains relevance judgments 

manually annotated using three relevance levels (definitely 

relevant, possibly relevant, and not relevant). We consider 

definitely and possibly relevant as “relevant.” 

5.1.4 Baseline system and statistical Boolean 

retrieval model 
For collecting pseudo-relevant documents as well as comparing 

performance, we employ baseline systems. As a baseline system 

for the USPAT, we consider the prior-art query generation method 

proposed in [6]. We generate a prior-art query which includes 100 

unigrams ranked by TF-IDF from the “brief summary” section of 

each topic patent. To formulate the queries, we used both 

unigrams and bigrams, with 100 unigrams showed the best 

performance in R@100. Each query term is weighted by its TF in 

the topic patent. In addition, as [6] used, we employ the Indri 

search engine [28] to run each baseline query. For example, a 

baseline query is formed as “#weight (15 glyph 20 character …)”. 

We consider the top 100 retrieved patents as pseudo-relevant. For 

OHSUMED, we consider all terms from the “Patient Information” 

and “Information Request” sections of each topic as a baseline 

query.  The top 100 documents returned by the Indri search engine 

are regarded as pseudo-relevant. 

To run Boolean queries, we use a statistical Boolean retrieval 

model. For each topic, we first find all documents satisfying the 

given Boolean function (i.e., Boolean query) and rank the 

documents by the generative probability of the query: 

 (  | )  ∏  ( | )

    

 ∏
         ( | )

| |   
    

 

where D is a target document satisfying a Boolean query BQ, q is 

the query term not associated with negation in BQ,       is the 

term frequency of q in D,  ( | ) is the probability of q in the 

collection C, and   is the Dirichlet smoothing parameter [29] set 

to 2000. Note that we do not use any query processing including 

query term weighting in this Boolean retrieval model. Since many 

current patent search systems (e.g., Patent Scope) are also based 

on these simple term statistics, query evaluation using this 

statistical Boolean retrieval model would be more practical and 

similar to real search environments than using other enhanced 

retrieval techniques (e.g., learning-to-rank or a dependency model) 

that are hard to integrate into current patent search systems. 

5.1.5 Evaluation Measure 
We use several metrics for evaluation. Since professional search is 

different from adhoc retrieval, and we are evaluating Boolean 

Query Suggestion, we employ new metrics in addition to 

conventional IR evaluation metrics. 

Failure Rate measures the percentile ratio of “failure” Boolean 

queries to all generated ones for each topic. Boolean queries 

which failed to retrieve any target documents are considered as a 

“failure”.  

Success Rate measures the percentile ratio of “effective” Boolean 

queries to the all generated ones, where “effective” means a 

Boolean query performing identical to or better than the baseline 

query with regard to R@100. This metric denotes how many 

Boolean queries achieve the baseline performance. 

Recall is a traditional IR evaluation metric; we use R@100 

because every retrieval result is truncated at rank 100 according to 

the assumption for simulation. In order to evaluate our query 

ranking model, we use the best recall scores of the top-n Boolean 

queries for each topic because if the ranking model can place 

effective queries within top-n suggestions, they will be available 

to searchers. 

F1 and F2 indicate weighted F-scores, both harmonic means of 

precision and recall, where F2 denotes double the weight on recall 

than F1. In particular, we compute F1@100 and F2@100 of the 

best performing query (with respect to R@100) from the top-n 

ranked queries. These metrics reflect the practical effectiveness of 

Boolean queries. Sometimes, the best Boolean query returns a 

short result list where many documents are relevant, which results 

in higher precision than the baseline results and expedites 

examination processes by professionals. F1 and F2 capture both 

recall and precision simultaneously, and help to measure search 

efficiency. 

5.2 Results 

5.2.1 Generation Performance 
The first experiment is conducted to verify the effectiveness of 

Boolean Query Generation. We use the results of our baseline 

system as specified above and documents retrieved at ranks higher 

than 100 as non-relevant. In the USPAT, we generate 4 types of 

attribute sets; unigrams and unigrams+bigrams from a topic patent, 

and unigrams and unigrams+bigrams from the pseudo-relevant 

documents. For OHSUMED, only 2 types, unigrams and 

unigrams+bigrams from the pseudo-relevant set, are used because 

there is no topic document. Table 2 shows the performance of 

Boolean query generation. We report the average of each 

evaluation metric over all topics. 



Table 2: Boolean Query Generation Performance. „unigram‟ and „bigram‟ indicate the Boolean queries generated from decision 

trees whose attributes are unigrams and bigrams, respectively. „topic-doc‟ and „prel-doc‟ denote that attributes are extracted from 

topic documents and a set of pseudo-relevant documents, respectively. 

Metric 

USPAT OHSUMED 

unigram 

(topic-doc) 

uni+bigram 

(topic-doc) 

unigram 

(prel-doc) 

uni+bigram 

(prel-doc) 

unigram 

(prel-doc) 

uni+bigram 

(prel-doc) 

Avg. # of Gen. 188.97 205.02 175.86 218.16 206.53 238.43 

Avg. # of Fail. 17.25 15.06 11.97 13.28 16.37 18.22 

Avg. Fail. Rate 9.47% 7.64% 6.98% 6.19% 7.93% 7.64% 

Avg. # of Scc. 14.13 9.62 14.32 10.86 14.58 16.81 

Avg. Scc. Rate 7.26% 4.56% 7.84% 4.63% 6.18% 5.85% 

Table 3: Boolean Query Ranking Performance. A † indicates a significant difference from the baseline and a * denotes a significant 

difference of unigram results from unigram+bigram („uni+bi‟) results in each row (the paired t-test is performed with p < 0.05). 

Significantly improved results on the baseline in each column are marked in bold. „cut-off‟ indicates that all Boolean queries 

ranked within the cut-off ranks are examined. „New Rel‟ and „Missed Old Rel‟ denote the percentile ratio of new relevant 

documents (not retrieved by the baseline but discovered by the suggested Boolean query) and missed old relevant documents 

(which were retrieved by the baseline but missed by the suggested Boolean query) to all relevant documents, respectively. 

 Metric Recall@100 F1@100 F2@100 Missed Old Rel New Rel 

U
S

P
T

O
 

Baseline 0.2557 0.1184 0.1711 0.0% 0.0% 

cut-off unigram uni+bi unigram uni+bi unigram uni+bi unigram uni+bi unigram uni+bi 

1 0.2227† 0.2174† 0.1062† 0.0969† 0.1515† 0.1421† 8.15% 9.60% 4.85% 5.21% 

2 0.2538 0.2445 0.1204 0.1096 0.1721 0.1604 6.49% 8.16% 6.30% 6.88% 

3 0.2670 0.2529 0.1264 0.1166 0.1808 0.1682 6.34% 7.65% 7.48% 7.36% 

4 0.2761 0.2535 0.1303 0.1169 0.1866* 0.1686 5.89% 7.65% 7.94% 7.42% 

5 0.2820 0.2592 0.1330†* 0.1191 0.1905†* 0.1721 5.58% 7.26% 8.21% 7.69% 

6 0.2852 0.2597 0.1345†* 0.1194 0.1927†* 0.1724 5.60% 7.20% 8.56% 7.69% 

7 0.2883†* 0.2622 0.1359†* 0.1209 0.1947†* 0.1745 5.53% 7.06% 8.79% 7.84% 

8 0.2911†* 0.2695 0.1370†* 0.1257 0.1965†* 0.1808 5.58% 6.98% 9.13% 8.46% 

9 0.2952†* 0.2710 0.1388† 0.1265 0.1992†* 0.1818 5.42% 6.88% 9.32% 8.66% 

10 0.2991†* 0.2722 0.1402† 0.1277 0.2014†* 0.1833 5.36% 6.83% 9.76% 8.91% 

O
H

S
U

M
E

D
 

Baseline 0.4377 0.2636 0.3462 0.0% 0.0% 

cut-off unigram uni+bi unigram uni+bi unigram uni+bi unigram uni+bi unigram uni+bi 

1 0.3068† 0.3052† 0.2155† 0.2222† 0.2623† 0.2710† 15.02% 14.07% 6.20% 6.28% 

2 0.3618† 0.3611† 0.2490 0.2580 0.3063 0.3148 13.19% 13.09% 7.95% 7.88% 

3 0.3865† 0.3754† 0.2669 0.2774 0.3277 0.3382 12.48% 12.45% 7.89% 7.99% 

4 0.3970 0.3923† 0.2763 0.2874 0.3380 0.3493 11.17% 11.17% 8.18% 8.18% 

5 0.4009 0.4032 0.2836 0.2944 0.3440 0.3523 10.20% 10.56% 8.58% 8.58% 

6 0.4137 0.4082 0.2959 0.3042† 0.3569 0.3663 10.16% 10.11% 8.71% 8.58% 

7 0.4141 0.4106 0.2961† 0.3045† 0.3572 0.3676 10.11% 10.09% 8.76% 8.72% 

8 0.4143 0.4170 0.2963† 0.3046† 0.3573 0.3769 10.11% 10.04% 8.84% 8.84% 

9 0.4393 0.4232 0.3076† 0.3169† 0.3751 0.3831† 10.04% 9.63% 8.92% 9.84% 

10 0.4411 0.4232 0.3089† 0.3185† 0.3766 0.3841† 9.24% 9.41% 9.87% 9.84% 

 Table 4: Examples of the top-5 suggestions for Topic Patent titled as “compressor driving apparatus” 100+ indicates that the # of 

Retrieved documents is greater than 100. Each result is truncated at top-100. R is Recall@100 and F1 is F1@100. 

n unigram R F1 #Ret unigram+bigram R F1 #Ret 

1 inverter ⋀ compressor 0.35 0.1167 100+ 
 inverter driving ⋀  inverter ⋀ 

compressor ⋀ circuit 
0.20 0.0748 87 

2 inverter ⋀ compressor ⋀ circuit 0.55 0.1833 100+ inverter ⋀ air conditioner ⋀ circuit 0.50 0.1667 100+ 

3 inverter ⋀ motor 0.05 0.0167 100+ 
 power unit ⋀  air conditioner ⋀ 

output ⋀ inverter ⋀ circuit 
0.55 0.2500 68 

4 
 inrush ⋀   metallic ⋀  inverter ⋀ 

compressor ⋀ relay 
0.10 0.0435 72 

 relay driver ⋀ compressor 

driving ⋀ inverter ⋀ circuit 
0.05 0.0294 48 

5 
 inrush ⋀   metallic ⋀   board ⋀  circuit 

⋀ compressor ⋀ supply ⋀ inverter 
0.25 0.1282 58 

switching elements ⋀  air 

conditioner 
0.30 0.1000 100+ 



As shown in Table 2, our decision tree-based generation algorithm 

generates sufficiently many distinct Boolean queries. About 200 

queries are generated for each topic, of which 6 ~ 9% fail to 

retrieve any target documents. In USPAT, pseudo-relevant 

documents are more reliable resources to generate Boolean 

queries than topic patents because of the smaller failure rate on 

average. Also, adding bigrams can lead decision trees to generate 

more queries, and the relative failure rate could drop. However, 

bigrams seems to be harmful in terms of the success rate. In 

addition, considering the number of “effective” Boolean queries 

(the number of successes), about 7% of queries show better or 

equal performance to the baseline system. Although this 

percentage may look low, we intend to obtain many effective 

queries via this generation process. Indeed, as you see from the 

number of successes, more than 10 effective queries are generated 

for each topic. If we can place these effective queries at top ranks 

using our Boolean query ranking method, professionals who 

examine these suggestions will find the effective queries. We 

address the performance of the query ranking technique in the 

following section. 

5.2.2 Retrieval Performance 
In the next series of experiments, we evaluate the effectiveness of 

Boolean Query Ranking by investigating if it succeeds in placing 

effective Boolean queries at high ranks, i.e., top 1 to 10. In 

training, generated queries for each topic are ordered by their 

R@100 scores. Also, in order to generate ground-truth ranked lists 

for training, we used Boolean queries from the topic-patent and 

pseudo-relevant patents in the USPTO, i.e., a ranked list contains 

unigram Boolean queries from the topic patent and pseudo-

relevant patens and the other list includes unigram+bigram 

Boolean queries from the topic patent and pseudo-relevant patens. 

For the OHSUMED, we contain two ranked lists: unigram and 

unigram+bigram Boolean queries from pseudo-relevant 

documents. Creating a long ranked list by unifying unigram and 

unigram+bigram results is possible, but our scheme (handling 

unigram and unigram+bigram Boolean queries separately) 

empirically showed better performance. Overall, the training sets 

for the USPAT include 30,561 unigram and 38,034 

unigram+bigram examples, and for OHSUMED contain 19,967 

unigram and 23,122 unigram+bigram instances. 

Prior to evaluating the performance of Boolean Query Ranking, 

we optimize the Ranking SVM by selecting optimal features. In 

order to obtain an optimal set, we tested several combinations of 

the proposed features (Section 4.2.2) using 10-fold cross-

validation. To identify a better combination, we use the best recall 

scores of the top-1 to 10 ranked Boolean queries for each 

combination. We examine what features can help to produce 

better rankings. Figure 4 depicts the average recall of the best 

Boolean queries over all topics of unigram training set in the 

USPAT. Gen shows consistently the worst performance, and 

when combined with Bool, the performance of Bool is also 

degraded. The best combination (QCS, SCQ, BQCB, and LBQR) 

found via trials of several possible combinations that can 

outperform Bool only. This is consistent with what [25] found, i.e., 

SCQ and QCS are the most effective features for sub-query 

ranking. We additionally recognized that combining them with 

BQCB and LBQR is more effective because BQCB ensures that 

the Boolean query performs at least as well as the baseline and 

LBQR benefits effective Boolean queries returning a short result 

list. Experiments using the OHSUMED collection or 

unigram+bigram query terms showed similar tendencies. 

With the optimal feature set, we now verify the effectiveness of 

our Boolean Query Ranking model by comparing with the 

baseline system. We calculate R@100, F1@100, and F2@100 of 

the best-performing query among the top-1 to 10 ranked queries. 

Table 3 shows the retrieval results within the top-1 to 10 ranked 

Boolean queries by 10-fold cross validation. From the table, we 

can identify how many top-n Boolean queries need to be 

examined to find an “effective” one (i.e., performing as well as 

the baseline). In other words, results of the top-n queries which 

are not significantly different from the baseline result show that at 

least one effective Boolean query can be within the top-n. 

In Table 3, we see that effective Boolean queries can be found 

within the top 2 or 4 suggestions in each corpus. In USPAT, an 

effective Boolean query is observed within the top 2 ranks in both 

unigram and unigram+bigram cases. Furthermore, in the unigram 

case, significantly improved results in terms of R@100 can be 

obtained by examining 7 or more Boolean queries. This is 

surprising to us because we expected Boolean queries to perform 

similar to the baseline. However, the result is a good indication 

that our system provides effective suggestions. In terms of F1 and 

F2, the top-5 unigram queries contain queries that outperform the 

baseline. These suggested queries retrieve about the same number 

of relevant documents as the baseline result, but with higher 

precision. That is, these Boolean queries may be more efficient in 

that they can allow professionals to examine fewer documents. On 

the other hand, effective queries are not successfully generated in 

case of unigram+bigram. For example, the number of generated 

effective queries in the unigram+bigram case is smaller than in the 

unigram case as seen in Table 2. Furthermore, many unigram 

results show statistically significant improvements over the 

unigram+bigram results, when comparing query performance at 

the same top-n. 

In OHSUMED, more queries need to be examined to find 

effective Boolean queries compared to USPAT. For example, four 

query suggestions should be examined in the unigram case in the 

OHSUMED, while only two queries are needed in the USPAT. 

Furthermore, even more queries should be examined in the 

unigram+bigram case. In addition, we could not obtain 

significantly better Boolean queries with regard to R@100 in this 

domain. For F-scores, however, we also identify more efficient 

Figure 4: Recall of the best query within Top-n Boolean 

queries (unigram case in USPAT). „Gen‟ and „Bool‟ mean 

general query quality predictors and Boolean query quality 

predictors, respectively. „Gen+Bool‟ uses all features, and 

„Best‟ uses only selective features (QCS, SCQ, BQCB, and 

LBQR) achieving the best performance. 



Boolean queries by examining the top 6 or 7 queries. A critical 

difference between OHSUMED and USPTO is that there is little 

distinction between unigram and unigram+bigram results in the 

OHSUMED while unigram queries are consistently better than 

unigram+bigram queries in the USPTO. Overall, our ranking 

model is effective in placing “effective” Boolean query 

suggestions within the top 2 to 5 ranks.  

In order to see how many new relevant documents (which were 

not retrieved by the baseline) are discovered and how many old 

relevant documents (which were retrieved by the baseline) are 

missed, by the best Boolean query within the top-n, we measure 

the ratios of the numbers of the new and missed old relevant 

documents to the number of all relevant documents (see “Missed 

Old Rel” and “New Rel” columns in Table 3). Generally, the more 

effective Boolean queries identified, the more new relevant 

documents are discovered while the less old relevant documents 

are missed. Specifically, for the best query in the top-10 

suggestions, the number of newly discovered relevant documents 

is greater than that of missed old relevant documents. In addition, 

the difference between unigram and unigram+bigram queries is 

not significant. 

Figures 5 and 6 depict scatter plots for the top-10 unigram and 

unigram+bigram Boolean queries in USPAT and OHSUMED, 

respectively. In Figure 5, the points on or above the diagonal line 

indicate effective Boolean queries (performing identical to or 

better than the baseline). The section from 0.0 to 0.1 in the x-axis 

contains many queries performing poorly. However, effective 

Boolean queries are also identified and some of them are superior 

to the low baseline. Also, there are many effective Boolean 

queries over the baseline performing moderately (0.1 ~ 0.7). In 

Figure 6, there are fewer poorly-performing queries (0.0 ~ 0.1), 

and most points are distributed between 0.1 and 0.9 in the x-axis. 

Along the diagonal line, effective queries in Figure 6 are more 

spread out than those of Figure 5. Although many Boolean queries 

underperform the baselines in both plots, our system is promising 

because effective queries can be identified by searchers in real 

environments. 

Figure 7 depicts the accumulated length of the top-n query results 

which means the number of unique documents in all the results by 

the top-n queries. This is related to the efficiency of our system in 

the investigation, i.e., how long it takes to complete the task. 

Patent searchers generally examine maximally 600 patents to 

accomplish a single task (i.e., topic) [1]. In Figure 7, less than 500 

unique documents accrue in the top-10 suggestions, which means 

that our suggestions can return a practical number of documents. 

Besides, since unigram+bigram queries return fewer documents 

than unigram queries, the coverage by unigram+bigram queries 

appears narrower. 

5.2.3 Qualitative Analysis 
We now provide a qualitative analysis of our system via real 

examples. Table 4 shows the top 5 Boolean queries suggested by 

our system, for a sample topic in USPAT. In this topic, the 

baseline system shows moderate performance (0.30 for R@100, 

0.10 for F1@100), and some suggestions outperform the baseline. 

Many Boolean queries retrieve less than 100 documents, and 

some long suggestions (e.g.,  power unit ⋀  air conditioner ⋀ 

output ⋀  inverter ⋀  circuit) can precisely retrieve relevant 

documents in the short result lists. Several suggestions return 

significantly more relevant documents. The suggested Boolean 

queries can provide reasonable query contexts. For example, 

“compressor” is often combined with “inverter”, “supply”, 

“circuit” in Table 4 because compressor driving apparatus can 

Figure 7: Average number of accumulated unique documents 

over the top-n Boolean queries. „u‟ and „b‟ indicate the 

results of unigram training examples and of bigram training 

examples, respectively. „PAT‟ and „MED‟ denote the USPAT 

and the OHSUMED collections, respectively. 

Figure 5: Scatter plot of the top-10 Boolean queries in 

USPAT. The x-axis represents R@100 of the baseline queries. 

A circle and a cross mean a unigram query and a 

unigram+bigram query, respectively. 

Figure 6: Scatter plot of the top-10 Boolean queries in 

OHSUMED. The x-axis represents R@100 of the baseline 

queries. A circle and a cross mean a unigram query and a 

unigram+bigram query, respectively. 



include power supply, inverter drivers and storage circuits. Also, 

looking at the negated terms, professional searchers can recognize 

where negation is applied in the provided context. For example, 

“power unit” is negated when it comes with “air conditioner”, 

“output”, “inverter”, and “circuit” in Table 4. Since we found that 

past cited patents are dealing with inverters or circuits for air 

conditioners, power supplies can be considered less important. 

6. CONCLUSION 
We proposed a framework to automatically suggest Boolean 

queries to assist professional searchers. We defined professional 

search as recall-oriented interactive tasks performed by 

information professionals. In order to provide reasonable 

suggestions in this context, we first generate a sufficient number 

of Boolean queries by exploiting decision tree learning and 

pseudo-relevant documents. To provide a reasonable number of 

suggestions, we rank the generated queries by a query ranking 

model using query quality predictors. In experiments, we 

simulated professional search processes in the patent and medical 

domains with our suggestion system. We found that our system 

can not only generate many effective Boolean queries but also 

select highly effective queries for suggestion. For future work, we 

plan to conduct experiments on the legal domain (e.g., finding 

relevant cases). Also, we will consider adding synonym structure 

into the current suggestion framework. 
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