
Automatic Boolean Query Suggestion for Professional
Search

Youngho Kim
yhkim@cs.umass.edu

Jangwon Seo
jangwon@cs.umass.edu

W. Bruce Croft
croft@cs.umass.edu

Center for Intelligent Information Retrieval
Department of Computer Science

University of Massachusetts Amherst, MA 01003, USA

ABSTRACT

In professional search environments, such as patent search or legal

search, search tasks have unique characteristics: 1) users

interactively issue several queries for a topic, and 2) users are

willing to examine many retrieval results, i.e., there is typically an

emphasis on recall. Recent surveys have also verified that

professional searchers continue to have a strong preference for

Boolean queries because they provide a record of what documents

were searched. To support this type of professional search, we

propose a novel Boolean query suggestion technique. Specifically,

we generate Boolean queries by exploiting decision trees learned

from pseudo-labeled documents and rank the suggested queries

using query quality predictors. We evaluate our algorithm in

simulated patent and medical search environments. Compared

with a recent effective query generation system, we demonstrate

that our technique is effective and general.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information Search

and Retrieval – Query Formulation, Search Process.

General Terms

Algorithms, Experimentation.

Keywords

Boolean query suggestion, prior-art search, patentability search.

1. INTRODUCTION
Query suggestion is an effective and practical way to help users

formulate queries [15, 16]. While there have been many studies on

how to provide alternative queries in general web search [15, 16],

little work has been done about suggestion for domain-specific

search, e.g., patent retrieval, legal search, and medical information

search. Many of the users in such domains are search

professionals, e.g., patent examiners and information specialists in

companies and law firms, who perform specialized search tasks

such as prior-art search and legal discovery. Query suggestion

techniques should be designed for the unique search

characteristics of these domains. For example, professional search

is typically more recall-oriented than consumer search. In the

patent validity task, for example, patent examiners formulate

search queries from a new patent to validate its patentability, and

generally spend about 12 hours to complete a single task by

examining approximately about 100 patent documents retrieved

by 15 different queries on average [1]. Another typical

characteristic of professional search is the need to document the

searches that are carried out.

For a number of reasons, both historic and technical, Boolean

queries are particularly common in professional search. For

example, in patent search, recent surveys [1, 2] revealed that the

use of Boolean operators is one of the most important features to

formulate effective queries from the perspective of patent

professionals. Also, according to [2], most patent professionals

who participated in the survey did not regard query term

weighting and query expansion as important whereas 96.3% of

participants agreed that Boolean operators are necessary. This is

not because Boolean queries are the most effective. In fact, a

number of studies over the years (e.g., [5, 6, 7, 9, 11]) have shown

that “keyword” queries are often significantly more effective.

Boolean queries, however, are easy for information professionals

to manipulate and are essentially self-documenting in that they

define precisely the set of documents that are retrieved.

Despite the importance of Boolean queries in professional search,

there has not been much research on helping information

professionals formulate those queries. Tseng and Wu [3] indicated

that the provision of suggested search vocabulary would be

helpful in patent search. Other studies on prior-art search that

automatically generate queries from patent text (e.g., [6, 7]) did

not investigate Boolean query suggestion. Current government or

commercial patent search systems 1 used by information

professionals all support Boolean queries but not query suggestion.

In this paper, we propose a method to suggest Boolean queries for

professional search. We define a Boolean query as the sequence

of terms associated by conjunction (AND) where each term can be

prefixed by negation (NOT). Although the OR operator is often

used by professionals to indicate synonym groups, the retrieval

evidence shows that AND and NOT have much more impact on

effectiveness in domains such as patent search with very detailed

documents (e.g., [4]). Adding synonym structure is left for future

work. Although the suggested Boolean queries can be generated

and used with any search engine, we use a simple statistical

Boolean retrieval model for our experiments (explained in Section

5). We do not adopt any additional query processing and term

weighting because those features are not generally preferred by

professionals and not supported by commercial search systems.

1PATENT SCOPE (http://www.wipo.int/patentscope/), PatFT

(http://patft.uspto.gov/), DELPHION (http://www.delphion.com/)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

SIGIR’11, July 24–28, 2011, Beijing, China.
Copyright 2011 ACM 978-1-4503-0757-4/11/07…$10.00.

http://www.wipo.int/patentscope/
http://patft.uspto.gov/
http://www.delphion.com/

In order to suggest Boolean queries, we first focus on generating

Boolean queries that describe the content of an initial set of

retrieved documents. We then rank the generated queries to place

effective (in terms of finding more relevant documents) queries at

higher ranks. In other words, our system performs two sub-tasks:

1) Boolean Query Generation, and 2) Boolean Query Ranking. In

the first task, we extract queries composed of Boolean operators

and various terms, representing a pseudo-relevant document set,

i.e., the top-k documents retrieved by a baseline system. To do

this, we learn a decision tree from the pseudo-relevant documents

so that the decision tree can determine whether a document is

pseudo-relevant or not. Afterwards, each positive decision rule

(i.e., a path from the root to a positive leaf node indicating

pseudo-relevance) formulates a Boolean query. Our Boolean

query generation process based on decision trees has two

advantages: i) a (binary) decision tree can be equivalent to a

Boolean function in terms of its expressiveness [20], and ii)

decision trees naturally determine the number of query terms.

In the next step, among the many generated Boolean queries, we

select the effective ones by ranking them. This is consistent with

typical query suggestion techniques used in web search, where the

“best” suggestions are presented to the user. We learn to rank the

generated queries using various quality predictors proposed for

adhoc retrieval [21, 22, 23, 24, 25] and several new features that

consider unique properties of Boolean queries.

We show the effectiveness of our Boolean query suggestion

system by verifying that the system is capable of generating

effective Boolean queries at high ranks. Although our focus is on

patent search, we show the generality of our approach through

additional experiments with a medical literature database.

The rest of this paper is organized as follows. In Section 2, we

outline previous work in query suggestion and generation, and

describe the limitations of previous work. Section 3 defines the

task of Boolean query suggestion for professional search, and we

present the methods we used in Section 4. Section 5 contains the

experimental results and discussion. Finally, we summarize the

contributions of our research and future work in Section 6.

2. RELATED WORK AND LIMITATIONS
In this section, we explore previous work for query suggestion for

web search and query generation.

Automatic query expansion [13] has been intensively researched

to bridge the gap between users’ queries and relevant documents.

In particular, pseudo-relevance feedback [12] is known as one of

the most effective techniques. Although many successful query

expansion techniques have been proposed (e.g., [13, 14]), most of

them are not easily applicable to our tasks because they are not

able to generate Boolean queries required for professional search

environments. However, the query expansion method proposed by

Mitra et al. [13] is strongly related to our work because they

addressed the effectiveness of Boolean filters to improve precision

of automatic query expansion. Specifically, they manually

formulate fuzzy Boolean operators (conjunction and disjunction)

and select expanded terms from a set of pseudo-relevant

documents refined by the Boolean filters. However, their work is

limited in that the Boolean filters are manually constructed while

we focus on automatic formulation. Moreover, they did not

consider Boolean queries.

Jones et al. [17] proposed a query substitution system that

suggests strongly related queries identified from user query

sessions. In query reformulation, Wang and Zhai [18] discovered

associated terms from query logs to substitute the original query

terms or add new terms into an original query. Also, query

recommendation techniques proposed in [16] provide alternatives

by clustering related queries in query logs, and White et al. [15]

studied types of query suggestions for web search preferred by

users via a user study. While the query logs and session

information that most previous techniques depend on are readily

available for web search, such resources are mostly not available

in domain-specific search environments that we address.

In patent search, although automatic query generation is crucial,

most previous work has focused on improving a retrieval model.

The participants in the patent retrieval task of NTCIR-6 [8] used

terms from claim sections without term selection. Mase and

Iwayama [9] added terms from abstract sections into claim-based

queries and weighted the query terms by their TF-IDF scores in

the query patent. Xue and Croft [6, 7] described a query

generation technique for patent search. In [6], they generated a

patent search query by selecting an effective section and

extracting the top-ranked words from the section using TF-IDF

weights. Their finding is that the “brief summary” section of

patents can produce the most effective queries, while weighting

query words by term frequencies is more effective than TF-IDF

weighting. They also expanded search queries to incorporate noun

phrases, but the improvement was not significant. In [7], they

improved retrieval performance of queries generated from [6] by

using a learning-to-rank model and various features. The queries

generated by this approach, however, contain many terms that are

weighted and have other constraints, making them unsuitable for

query suggestion. Similar to the NTCIR workshop, TREC

recently proposed the Chemical track. A sub-task of the track

addresses search for chemical patents [10]. Though Gobeill et al.

[11] considered query expansion and showed the best

performance among the participants, their expansion technique is

somewhat limited in that it depends on a concept identifier and

external resources (PubChem2) which would not be applied to

general patents.

The Boolean query suggestion approach is based on our previous

work with professional searchers and studies such as Bache and

Azzopardi [4]. They pointed out that patent searchers are in favor

of exact-match models, i.e., traditional Boolean retrieval, because

Boolean models can improve the retrievability of target

documents. Accordingly, they proposed hybrid retrieval models in

which target patents are ranked by TF-IDF or Okapi BM25

models and then filtered by conjunctive and disjunctive Boolean

operators (AND and OR). Though their models are empirically

effective, those are limited in using only two-word queries, i.e.,

two words are associated by conjunction or disjunction.

In the medical domain, Hashmi et al. [19] developed a system to

generate context-specific queries from clinical guidelines, but they

also used an external knowledge base to create query terms.

3. PROBLEM FORMULATION
In this section, we formulate the Boolean query suggestion

problem for professional search and define associated terms.

2 The database of compounds structure and description for

chemical molecules (http://pubchem.ncbi.nlm.nih.gov/)

http://pubchem.ncbi.nlm.nih.gov/

Definition 1 (Professional Search): Professional search is

interactive information retrieval performed by professionals in a

specific domain such as the patent or medical domain. The main

difference of this task from adhoc retrieval (e.g., web search) is

that professional search tends to be recall-oriented. The search

behavior of professionals is quite different from that of general

users. For example, since professionals tend to prefer finding

more relevant documents to finding a small number of relevant

documents at the top ranks, they examine more retrieval results

than web search users. Accordingly, search processes are often

long and repeatable, e.g., a patent examiner issues several queries

until the obtained results are satisfactory.

Definition 2 (Topic): A topic is a subject for which queries

against search engines are formed and the retrieval results are

examined by professionals. For example, in prior-art search, a

new patent to be validated can be a topic. In the medical domain,

a description of patient symptoms can be a topic.

Definition 3 (Boolean Query): A Boolean query is a sequence of

query terms all of which are connected by conjunction and each of

which can be prefixed by negation, e.g., ⋀
⋀ . In this work, as query term candidates, we

consider bigrams as well as unigrams.

Definition 4 (Pseudo-Relevant Documents): Pseudo-relevant

documents are the top k documents retrieved by a baseline system.

The baseline system can handle a weighted or expanded query

using a state-of-the-art retrieval model. We exploit the pseudo-

relevant documents to formulate Boolean queries that are

suggested to users.

Definition 5 (Boolean Query Generation): Boolean query

generation is formulating Boolean queries from a set of query

term candidates. Using terms appearing in a set of pseudo-relevant

documents for topic, we formulate Boolean queries that consist of

effective terms and Boolean operators (AND and NOT), where

query term candidates can be unigrams or bigrams extracted from

the pseudo-relevant documents.

Definition 6 (Boolean Query Ranking): Boolean query ranking is

determining a preference among generated Boolean queries for a

topic with respect to a recall metric, e.g., recall at 100 (R@100).

This is necessary for suggesting a reasonable number of effective

Boolean queries (e.g., 5~10) to users because many queries can be

generated in the Boolean query generation phase. We produce a

ranked list of generated Boolean queries where an effective

Boolean query should be placed within the high ranks (e.g., top

10).

4. BOOLEAN QUERY SUGGESTION
In this section, we first propose a decision tree-based method for

Boolean Query Generation, and then describe a Boolean Query

Ranking model using various query quality predictors. Figure 1

demonstrates the overall process of our system. In Boolean Query

Generation, we train decision trees using the baseline retrieval

result (containing the top-k pseudo-relevant documents and

beyond-k non-relevant documents) and formulate corresponding

Boolean queries (BQs) (details in Section 4.1). In Boolean Query

Ranking, the ranking model trained from sorted lists of BQs with

respect to R@100 can rank the generated BQs by query quality

predictors (details in Section 4.2). The top ranked queries are

presented as suggestions.

4.1 Decision Tree-based Boolean Query

Generation
Binary decision trees are equivalent representations of Boolean

functions [20]. If we could train a decision tree where a node

corresponds to a term appearing in training documents in order to

determine whether a document is relevant to a topic, the learned

decision tree could imply a Boolean query representing a set of

relevant documents. In addition, the length and query terms of a

Boolean query are naturally determined by the depth and the

nodes of the tree with reasonable accuracy. A problem, however,

is that we do not have training data to learn a tree which can be

generalized for every query because each query is associated with

a different set of terms. So, instead of relevant documents, we use

pseudo-relevant documents defined in Section 3 as training data.

In other words, we learn a decision tree by using the top-k

documents as positive examples. As negative examples,

presumably non-relevant documents (ranked beyond-k in the

baseline retrieval result) are used. Accordingly, Boolean queries

generated from the positive nodes of the learned decision tree are

expected to be as effective as the baseline query because the

decision tree is learned from the pseudo-relevant documents.

Once we learn a decision tree from a topic, we identify a single

path from a root to a positive leaf node in the decision tree and

convert the rule (path) into a Boolean query. Accordingly, a

decision tree produces as many Boolean queries as the number of

positive leaf nodes. Figure 2 depicts how to generate Boolean

queries from an example decision tree whose attributes (query

term candidates) are alloy, wheel, and steel, and True/False

values of each leaf node denotes a positive/negative decision for

input documents. For example, a document including alloy and

wheel is classified as True (or relevant) because a number of

pseudo-relevant examples used for training include the two terms.

That is, the path from alloy to the first True leaf can formulate

query Q1, which is expected to retrieve documents containing

alloy and wheel. Since we concentrate on conjunction and

negation, we generate two queries, Q1 and Q2, rather than a single

unified query such as (⋀) (⋀) Note

that AND and NOT have more impact on the effectiveness and Q1

or Q2 is empirically better than the unified query w.r.t R@100 that

we use to evaluate a Boolean query.

Figure 1: Boolean Query Suggestion System Workflow.

We describe the Boolean Query Generation algorithm used for the

example in the following. Figure 2 shows the process of

generating Boolean queries from several sets of query term

candidates (i.e., attributes), a set of pseudo-relevant documents

(the top-k baseline retrieval results) and a set of non-relevant

documents (the beyond-k baseline retrieval results). To produce a

sufficient number of Boolean queries (among which we can find

many effective Boolean queries), for each topic, we train several

decision trees with different attributes, while all the trees are

trained by the same training set. In this, the training set includes

the k positive (pseudo-relevant) documents and an equal number

of negative instances (non-relevant) for a topic. To obtain N sets

of attributes, various approaches (e.g., thesaurus and concept

identification) can be used. In this paper, we change the number

of query term candidates in each set to get multiple attribute sets.

For the patent search experiments, in this paper, we select query

term candidates from a unigram language model estimated from a

topic patent (i.e., new patent) or its pseudo-relevant patent set. We

first select unigrams which are likely to be generated from the

following language models, assuming that terms are effective for

retrieving pseudo-relevant patents if the terms frequently occur in

the topic patent or pseudo-relevant patents.

 (|)
 ()

| |

 (|)
∑ ()

∑ | |

where is topic patent, is the set of pseudo-relevant patents

for topic, () indicates a term frequency of a word w in a

document , and | | denotes the length of .

Stop-words3 are removed. Using term probabilities, we can rank

terms in a topic document or pseudo-relevant documents. We

select the top-m terms as attributes for decision trees. In particular,

to obtain multiple sets of attributes, we consider 20 different m’s

(in {5,10,…,100}) , each of which makes an attribute set.

In addition, from an observation that patents contain many

compound words that may help to improve the retrievability, we

can add an equal number of bigrams into each set of selected

unigrams. To rank bigrams, we estimate smoothed bigram

language models for the topic patent and the pseudo-relevant

patent set as follows:

 (|) ()
 ()

| |
 (|)

3 Stop-words contain articles, prepositions, acronyms (e.g., fig.),

(relative) pronouns, and general nouns (e.g., method, figure, and

apparatus), frequently appeared in patent documents (available

at http://www.cs.umass.edu/~yhkim/).

ALGORITHM Boolean Query Generation

INPUT:

 N different sets of attributes s.t. {
 + where is a set of query term candidates

 The baseline retrieval results for a topic, B

OUTPUT: A set of Boolean queries, S

PROCESS:

 Initialize * +
 For i = 1,…,N

 Construct training data from B: the top-k

documents (positive examples) and k documents

randomly selected from the beyond-k (negative

examples)

 Train a decision tree using the training data and

 as attributes.

 Find paths from the root to every positive leaf

node in the decision tree and formulate

corresponding Boolean queries.

 Append the Boolean queries to S.

 End For

 Return S

Figure 3: Boolean Query Generation Algorithm.

 (|) ()
∑ ()

∑ | |

 (|)

where is a bias to unigrams. We set to 0.7 and eliminate

bigrams which contain any stop-word.

For the medical search experiments, we use the same setting

except that we use only pseudo-relevant documents because topic

documents are not usually given. In addition, since long Boolean

queries may not return any retrieval results, we eliminate Boolean

queries which contain more than 15 terms.

4.2 Boolean Query Ranking
To select a reasonable number of effective queries from a pool of

generated Boolean queries, we propose a Boolean query ranking

model and introduce features for the model.

4.2.1 Learning-to-Rank Boolean Queries
In order to rank generated Boolean queries, we learn a ranking

function which predicts the preference between Boolean queries.

That is, given a topic and generated Boolean queries, our ranking

model produces a ranked list of the Boolean queries in descending

order of recall at 100 (R@100). To do this, we use ranks by

R@100’s of the Boolean queries generated for each topic as target

values to be predicted. The formal definition of this model is

given as follows.

Suppose that * + is a set of ranks, where l denotes

the number of ranks, and we can order the ranks
where indicates the preference between two ranks. For training,

a set of topics * + is given and each topic is
associated with * ()+ a set of Boolean

queries, where () means the number of generated Boolean

queries for and a list of labels * ()+ each of

which indicates the rank of each Boolean query, BQij, in

 . A feature vector () is generated from each

topic and Boolean query pair. We can represent a set of training

examples as *()+
 .

Figure 2: Decision Tree-based Boolean Query Generation.

http://www.cs.umass.edu/~yhkim/

A ranking function maps a feature vector associated

with a Boolean query to a score for the query. Specifically, this

model generates a permutation of integers spanned in , ()-
for a topic, the corresponding Boolean query list, and the ranking

function f. The permutation () is defined as a bijection

from * ()+ to itself where is identified by an

integer of , ()- and ()denotes the position of . The

model is learned to minimize a loss function which is defined by

the disagreements between permutation () and rank list yi

for every training topic.

For learning, we use Ranking SVM [26]. In contrast to Boolean

Query Generation where only pseudo-relevance is considered, we

use real relevance judgments to compute R@100 of training

examples for Boolean Query Ranking. This is because Boolean

Query Ranking uses generalizable features while Boolean Query

Generation uses terms which strongly depends on topics.

4.2.2 Features
In order to compose a feature vector for our query ranking model,

we leverage features from previous studies for predicting query

performance [21, 22, 23]. Previous studies (e.g., [24, 25]) proved

that query quality predictors are effective for ranking sub-queries.

Since generated Boolean queries also consist of subsets of terms

in topic documents (e.g., query patents), we can expect those

quality predictors also help to recognize effective Boolean queries.

However, we additionally use more features specialized for our

task because we observed that Boolean queries often show

different characteristics from adhoc queries. Accordingly, we

categorize our features into two groups, General Query Quality

Predictor and Boolean Query Quality Predictor. Table 1

summarizes the features in each group.

General Query Quality Predictors contain features proposed by

previous studies for quality prediction of adhoc queries. As shown

in Table 1, these features include QCS, QS, SOQ, SCQ, IDF, and

ICTF. Since Boolean queries show different aspects from adhoc

queries for which those features have been proposed, we need to

adjust the way these features are computed. For example, since

adhoc queries do not contain negation (e.g.,) in contrast

to a Boolean query, we consider terms associated only with

conjunctions. SOQ measures cosine similarity between a Boolean

query and the baseline query while QS is computed only within

pseudo-relevant documents, not within the whole collection

because we aim to generate Boolean queries to retrieve pseudo-

relevant documents. For IDF, ICTF, and SCQ, as [24] did, we

calculate the sum, the standard deviation, the ratio of the

maximum to the minimum, the maximum, the arithmetic mean,

the geometric mean, the harmonic mean, and the coefficient of

variation of each value of a query term. These modified rules are

applied to both unigrams and bigrams.

Boolean Query Quality Predictors are features with the purpose

of estimating Boolean query quality. All these features except

BQTF are related to the retrieval results of a Boolean query

because comparing a Boolean query result with the baseline result

is a simple and effective way to predict Boolean query quality.

BQCB is the ratio of the number of documents retrieved by both a

Boolean query and the baseline system to the number of

documents retrieved by the baseline system. This feature denotes

how many of the documents retrieved by the baseline system can

be found by a Boolean query. BQS is a measure of the number of

pseudo-relevant documents retrieved by a Boolean query relative

Table 1: Two categories of Ranking Features.

General Query Quality Predictors

QCS Query Clarity Score [21]

QS Query Scope [23] in pseudo-relevant patents

SOQ Similarity to Original Query [24]

SCQ Similarity Collection Query [22]

IDF Inverse Document Frequency

ICTF Inverse Collection Term Frequency [24]

Boolean Query Quality Predictor

BQCB
Boolean Query result Coverage of

Baseline retrieval results

BQS Boolean Query Scope in pseudo-relevance

LBQR Length of Boolean Query Result

BQTF
Boolean Query Term Frequency in

pseudo-relevant documents

to the whole size of pseudo-relevant documents, i.e., k. This

feature helps to assure the effectiveness of a Boolean query.

LBQR measures the number of retrieved documents for a Boolean

query. Since we found that an effective Boolean query sometimes

returns a shorter result list containing highly relevant documents

than the baseline result, we consider this feature as a signal to find

such Boolean queries. BQTF counts the frequency of a

conjunctive query term in pseudo-relevant documents, assuming

that a frequent term in pseudo-relevant documents might be

effective for retrieving the documents. Note that we do not

consider negation terms because they rarely appear in pseudo-

relevant documents. Besides, for BQTF, the same statistics as

used for IDF are calculated.

Overall, a feature vector contains 37 different feature values (from

10 different types).

5. EXPERIMENTS: Professional Search

Simulation
We evaluate our Boolean query suggestion system by simulating

professional search. We first describe how to set up experiments

to simulate search processes and then provide experimental results

and discussion with Boolean query examples.

5.1 Experimental Setup
To perform decision tree learning, the C4.5 algorithm4 was used,

with pruning turned on to obtain more accurate trees. For Boolean

Query Ranking, SVMrank 5 is used as a learning-to-rank algorithm,

and 10-fold cross-validation is performed. Queries and documents

are stemmed by the Krovetz stemmer. More details are provided

as follows.

5.1.1 Search Tasks
We setup experiments for two different search tasks considering

two domains of interest: the patent and medical domains. Our task

for the patent domain is patentability search which aims to find

prior patents which may conflict with a new patent. On the other

4 http://en.wikipedia.org/wiki/C4.5_algorithm

5 http://www.cs.cornell.edu/People/tj/svm_light/svm_rank.html

http://en.wikipedia.org/wiki/C4.5_algorithm
http://www.cs.cornell.edu/People/tj/svm_light/svm_rank.html

hand, the search task for the medical domain is reference retrieval

upon the request of disease information that the patient is

undertaking. Both tasks are known to be recall-oriented.

5.1.2 Assumptions for Simulation
We suggest Boolean queries to help professionals formulate

queries. In order to demonstrate the practical effectiveness of our

system, we test our system under the following assumptions. First,

we assume that professionals directly use suggested Boolean

queries without reformulation because we want to show the lower

bound of performance that our system can achieve. In real

environments, professionals may use our suggestions or formulate

new Boolean queries based on the suggestions. Second, we

assume that the searchers will examine a maximum of the top 100

of every Boolean query result since 100 patents on average are

examined in real examination processes as reported in [1].

5.1.3 Collections

Experiments are conducted on two different collections, patents

and medical documents. As a patent corpus, we use USPTO

(United States Patent and Trademark Office) patents provided by

NTCIR-6 [8]. The collection contains 981,948 patents published

from 1993 to 2000. To develop topics (new patents), we randomly

selected 100 patents published in 2000, ensuring that their

citations list more than 20 patents and at least 90% of them are

included in the test collection. As done in the TREC chemical

track [10] and NTCIR-6 [8], we considered patents cited in each

topic patent as “relevant”. We call this collection USPAT. For a

medical corpus, we used the OHSUMED collection [27] which

consists of 348,566 medical references (documents) and 106

queries (topics). This test collection contains relevance judgments

manually annotated using three relevance levels (definitely

relevant, possibly relevant, and not relevant). We consider

definitely and possibly relevant as “relevant.”

5.1.4 Baseline system and statistical Boolean

retrieval model
For collecting pseudo-relevant documents as well as comparing

performance, we employ baseline systems. As a baseline system

for the USPAT, we consider the prior-art query generation method

proposed in [6]. We generate a prior-art query which includes 100

unigrams ranked by TF-IDF from the “brief summary” section of

each topic patent. To formulate the queries, we used both

unigrams and bigrams, with 100 unigrams showed the best

performance in R@100. Each query term is weighted by its TF in

the topic patent. In addition, as [6] used, we employ the Indri

search engine [28] to run each baseline query. For example, a

baseline query is formed as “#weight (15 glyph 20 character …)”.

We consider the top 100 retrieved patents as pseudo-relevant. For

OHSUMED, we consider all terms from the “Patient Information”

and “Information Request” sections of each topic as a baseline

query. The top 100 documents returned by the Indri search engine

are regarded as pseudo-relevant.

To run Boolean queries, we use a statistical Boolean retrieval

model. For each topic, we first find all documents satisfying the

given Boolean function (i.e., Boolean query) and rank the

documents by the generative probability of the query:

 (|) ∏ (|)

 ∏
 (|)

| |

where D is a target document satisfying a Boolean query BQ, q is

the query term not associated with negation in BQ, is the

term frequency of q in D, (|) is the probability of q in the

collection C, and is the Dirichlet smoothing parameter [29] set

to 2000. Note that we do not use any query processing including

query term weighting in this Boolean retrieval model. Since many

current patent search systems (e.g., Patent Scope) are also based

on these simple term statistics, query evaluation using this

statistical Boolean retrieval model would be more practical and

similar to real search environments than using other enhanced

retrieval techniques (e.g., learning-to-rank or a dependency model)

that are hard to integrate into current patent search systems.

5.1.5 Evaluation Measure
We use several metrics for evaluation. Since professional search is

different from adhoc retrieval, and we are evaluating Boolean

Query Suggestion, we employ new metrics in addition to

conventional IR evaluation metrics.

Failure Rate measures the percentile ratio of “failure” Boolean

queries to all generated ones for each topic. Boolean queries

which failed to retrieve any target documents are considered as a

“failure”.

Success Rate measures the percentile ratio of “effective” Boolean

queries to the all generated ones, where “effective” means a

Boolean query performing identical to or better than the baseline

query with regard to R@100. This metric denotes how many

Boolean queries achieve the baseline performance.

Recall is a traditional IR evaluation metric; we use R@100

because every retrieval result is truncated at rank 100 according to

the assumption for simulation. In order to evaluate our query

ranking model, we use the best recall scores of the top-n Boolean

queries for each topic because if the ranking model can place

effective queries within top-n suggestions, they will be available

to searchers.

F1 and F2 indicate weighted F-scores, both harmonic means of

precision and recall, where F2 denotes double the weight on recall

than F1. In particular, we compute F1@100 and F2@100 of the

best performing query (with respect to R@100) from the top-n

ranked queries. These metrics reflect the practical effectiveness of

Boolean queries. Sometimes, the best Boolean query returns a

short result list where many documents are relevant, which results

in higher precision than the baseline results and expedites

examination processes by professionals. F1 and F2 capture both

recall and precision simultaneously, and help to measure search

efficiency.

5.2 Results

5.2.1 Generation Performance
The first experiment is conducted to verify the effectiveness of

Boolean Query Generation. We use the results of our baseline

system as specified above and documents retrieved at ranks higher

than 100 as non-relevant. In the USPAT, we generate 4 types of

attribute sets; unigrams and unigrams+bigrams from a topic patent,

and unigrams and unigrams+bigrams from the pseudo-relevant

documents. For OHSUMED, only 2 types, unigrams and

unigrams+bigrams from the pseudo-relevant set, are used because

there is no topic document. Table 2 shows the performance of

Boolean query generation. We report the average of each

evaluation metric over all topics.

Table 2: Boolean Query Generation Performance. „unigram‟ and „bigram‟ indicate the Boolean queries generated from decision

trees whose attributes are unigrams and bigrams, respectively. „topic-doc‟ and „prel-doc‟ denote that attributes are extracted from

topic documents and a set of pseudo-relevant documents, respectively.

Metric

USPAT OHSUMED

unigram

(topic-doc)

uni+bigram

(topic-doc)

unigram

(prel-doc)

uni+bigram

(prel-doc)

unigram

(prel-doc)

uni+bigram

(prel-doc)

Avg. # of Gen. 188.97 205.02 175.86 218.16 206.53 238.43

Avg. # of Fail. 17.25 15.06 11.97 13.28 16.37 18.22

Avg. Fail. Rate 9.47% 7.64% 6.98% 6.19% 7.93% 7.64%

Avg. # of Scc. 14.13 9.62 14.32 10.86 14.58 16.81

Avg. Scc. Rate 7.26% 4.56% 7.84% 4.63% 6.18% 5.85%

Table 3: Boolean Query Ranking Performance. A † indicates a significant difference from the baseline and a * denotes a significant

difference of unigram results from unigram+bigram („uni+bi‟) results in each row (the paired t-test is performed with p < 0.05).

Significantly improved results on the baseline in each column are marked in bold. „cut-off‟ indicates that all Boolean queries

ranked within the cut-off ranks are examined. „New Rel‟ and „Missed Old Rel‟ denote the percentile ratio of new relevant

documents (not retrieved by the baseline but discovered by the suggested Boolean query) and missed old relevant documents

(which were retrieved by the baseline but missed by the suggested Boolean query) to all relevant documents, respectively.

 Metric Recall@100 F1@100 F2@100 Missed Old Rel New Rel

U
S

P
T

O

Baseline 0.2557 0.1184 0.1711 0.0% 0.0%

cut-off unigram uni+bi unigram uni+bi unigram uni+bi unigram uni+bi unigram uni+bi

1 0.2227† 0.2174† 0.1062† 0.0969† 0.1515† 0.1421† 8.15% 9.60% 4.85% 5.21%

2 0.2538 0.2445 0.1204 0.1096 0.1721 0.1604 6.49% 8.16% 6.30% 6.88%

3 0.2670 0.2529 0.1264 0.1166 0.1808 0.1682 6.34% 7.65% 7.48% 7.36%

4 0.2761 0.2535 0.1303 0.1169 0.1866* 0.1686 5.89% 7.65% 7.94% 7.42%

5 0.2820 0.2592 0.1330†* 0.1191 0.1905†* 0.1721 5.58% 7.26% 8.21% 7.69%

6 0.2852 0.2597 0.1345†* 0.1194 0.1927†* 0.1724 5.60% 7.20% 8.56% 7.69%

7 0.2883†* 0.2622 0.1359†* 0.1209 0.1947†* 0.1745 5.53% 7.06% 8.79% 7.84%

8 0.2911†* 0.2695 0.1370†* 0.1257 0.1965†* 0.1808 5.58% 6.98% 9.13% 8.46%

9 0.2952†* 0.2710 0.1388† 0.1265 0.1992†* 0.1818 5.42% 6.88% 9.32% 8.66%

10 0.2991†* 0.2722 0.1402† 0.1277 0.2014†* 0.1833 5.36% 6.83% 9.76% 8.91%

O
H

S
U

M
E

D

Baseline 0.4377 0.2636 0.3462 0.0% 0.0%

cut-off unigram uni+bi unigram uni+bi unigram uni+bi unigram uni+bi unigram uni+bi

1 0.3068† 0.3052† 0.2155† 0.2222† 0.2623† 0.2710† 15.02% 14.07% 6.20% 6.28%

2 0.3618† 0.3611† 0.2490 0.2580 0.3063 0.3148 13.19% 13.09% 7.95% 7.88%

3 0.3865† 0.3754† 0.2669 0.2774 0.3277 0.3382 12.48% 12.45% 7.89% 7.99%

4 0.3970 0.3923† 0.2763 0.2874 0.3380 0.3493 11.17% 11.17% 8.18% 8.18%

5 0.4009 0.4032 0.2836 0.2944 0.3440 0.3523 10.20% 10.56% 8.58% 8.58%

6 0.4137 0.4082 0.2959 0.3042† 0.3569 0.3663 10.16% 10.11% 8.71% 8.58%

7 0.4141 0.4106 0.2961† 0.3045† 0.3572 0.3676 10.11% 10.09% 8.76% 8.72%

8 0.4143 0.4170 0.2963† 0.3046† 0.3573 0.3769 10.11% 10.04% 8.84% 8.84%

9 0.4393 0.4232 0.3076† 0.3169† 0.3751 0.3831† 10.04% 9.63% 8.92% 9.84%

10 0.4411 0.4232 0.3089† 0.3185† 0.3766 0.3841† 9.24% 9.41% 9.87% 9.84%

 Table 4: Examples of the top-5 suggestions for Topic Patent titled as “compressor driving apparatus” 100+ indicates that the # of

Retrieved documents is greater than 100. Each result is truncated at top-100. R is Recall@100 and F1 is F1@100.

n unigram R F1 #Ret unigram+bigram R F1 #Ret

1 inverter ⋀ compressor 0.35 0.1167 100+
 inverter driving ⋀ inverter ⋀

compressor ⋀ circuit
0.20 0.0748 87

2 inverter ⋀ compressor ⋀ circuit 0.55 0.1833 100+ inverter ⋀ air conditioner ⋀ circuit 0.50 0.1667 100+

3 inverter ⋀ motor 0.05 0.0167 100+
 power unit ⋀ air conditioner ⋀

output ⋀ inverter ⋀ circuit
0.55 0.2500 68

4
 inrush ⋀ metallic ⋀ inverter ⋀

compressor ⋀ relay
0.10 0.0435 72

 relay driver ⋀ compressor

driving ⋀ inverter ⋀ circuit
0.05 0.0294 48

5
 inrush ⋀ metallic ⋀ board ⋀ circuit

⋀ compressor ⋀ supply ⋀ inverter
0.25 0.1282 58

switching elements ⋀ air

conditioner
0.30 0.1000 100+

As shown in Table 2, our decision tree-based generation algorithm

generates sufficiently many distinct Boolean queries. About 200

queries are generated for each topic, of which 6 ~ 9% fail to

retrieve any target documents. In USPAT, pseudo-relevant

documents are more reliable resources to generate Boolean

queries than topic patents because of the smaller failure rate on

average. Also, adding bigrams can lead decision trees to generate

more queries, and the relative failure rate could drop. However,

bigrams seems to be harmful in terms of the success rate. In

addition, considering the number of “effective” Boolean queries

(the number of successes), about 7% of queries show better or

equal performance to the baseline system. Although this

percentage may look low, we intend to obtain many effective

queries via this generation process. Indeed, as you see from the

number of successes, more than 10 effective queries are generated

for each topic. If we can place these effective queries at top ranks

using our Boolean query ranking method, professionals who

examine these suggestions will find the effective queries. We

address the performance of the query ranking technique in the

following section.

5.2.2 Retrieval Performance
In the next series of experiments, we evaluate the effectiveness of

Boolean Query Ranking by investigating if it succeeds in placing

effective Boolean queries at high ranks, i.e., top 1 to 10. In

training, generated queries for each topic are ordered by their

R@100 scores. Also, in order to generate ground-truth ranked lists

for training, we used Boolean queries from the topic-patent and

pseudo-relevant patents in the USPTO, i.e., a ranked list contains

unigram Boolean queries from the topic patent and pseudo-

relevant patens and the other list includes unigram+bigram

Boolean queries from the topic patent and pseudo-relevant patens.

For the OHSUMED, we contain two ranked lists: unigram and

unigram+bigram Boolean queries from pseudo-relevant

documents. Creating a long ranked list by unifying unigram and

unigram+bigram results is possible, but our scheme (handling

unigram and unigram+bigram Boolean queries separately)

empirically showed better performance. Overall, the training sets

for the USPAT include 30,561 unigram and 38,034

unigram+bigram examples, and for OHSUMED contain 19,967

unigram and 23,122 unigram+bigram instances.

Prior to evaluating the performance of Boolean Query Ranking,

we optimize the Ranking SVM by selecting optimal features. In

order to obtain an optimal set, we tested several combinations of

the proposed features (Section 4.2.2) using 10-fold cross-

validation. To identify a better combination, we use the best recall

scores of the top-1 to 10 ranked Boolean queries for each

combination. We examine what features can help to produce

better rankings. Figure 4 depicts the average recall of the best

Boolean queries over all topics of unigram training set in the

USPAT. Gen shows consistently the worst performance, and

when combined with Bool, the performance of Bool is also

degraded. The best combination (QCS, SCQ, BQCB, and LBQR)

found via trials of several possible combinations that can

outperform Bool only. This is consistent with what [25] found, i.e.,

SCQ and QCS are the most effective features for sub-query

ranking. We additionally recognized that combining them with

BQCB and LBQR is more effective because BQCB ensures that

the Boolean query performs at least as well as the baseline and

LBQR benefits effective Boolean queries returning a short result

list. Experiments using the OHSUMED collection or

unigram+bigram query terms showed similar tendencies.

With the optimal feature set, we now verify the effectiveness of

our Boolean Query Ranking model by comparing with the

baseline system. We calculate R@100, F1@100, and F2@100 of

the best-performing query among the top-1 to 10 ranked queries.

Table 3 shows the retrieval results within the top-1 to 10 ranked

Boolean queries by 10-fold cross validation. From the table, we

can identify how many top-n Boolean queries need to be

examined to find an “effective” one (i.e., performing as well as

the baseline). In other words, results of the top-n queries which

are not significantly different from the baseline result show that at

least one effective Boolean query can be within the top-n.

In Table 3, we see that effective Boolean queries can be found

within the top 2 or 4 suggestions in each corpus. In USPAT, an

effective Boolean query is observed within the top 2 ranks in both

unigram and unigram+bigram cases. Furthermore, in the unigram

case, significantly improved results in terms of R@100 can be

obtained by examining 7 or more Boolean queries. This is

surprising to us because we expected Boolean queries to perform

similar to the baseline. However, the result is a good indication

that our system provides effective suggestions. In terms of F1 and

F2, the top-5 unigram queries contain queries that outperform the

baseline. These suggested queries retrieve about the same number

of relevant documents as the baseline result, but with higher

precision. That is, these Boolean queries may be more efficient in

that they can allow professionals to examine fewer documents. On

the other hand, effective queries are not successfully generated in

case of unigram+bigram. For example, the number of generated

effective queries in the unigram+bigram case is smaller than in the

unigram case as seen in Table 2. Furthermore, many unigram

results show statistically significant improvements over the

unigram+bigram results, when comparing query performance at

the same top-n.

In OHSUMED, more queries need to be examined to find

effective Boolean queries compared to USPAT. For example, four

query suggestions should be examined in the unigram case in the

OHSUMED, while only two queries are needed in the USPAT.

Furthermore, even more queries should be examined in the

unigram+bigram case. In addition, we could not obtain

significantly better Boolean queries with regard to R@100 in this

domain. For F-scores, however, we also identify more efficient

Figure 4: Recall of the best query within Top-n Boolean

queries (unigram case in USPAT). „Gen‟ and „Bool‟ mean

general query quality predictors and Boolean query quality

predictors, respectively. „Gen+Bool‟ uses all features, and

„Best‟ uses only selective features (QCS, SCQ, BQCB, and

LBQR) achieving the best performance.

Boolean queries by examining the top 6 or 7 queries. A critical

difference between OHSUMED and USPTO is that there is little

distinction between unigram and unigram+bigram results in the

OHSUMED while unigram queries are consistently better than

unigram+bigram queries in the USPTO. Overall, our ranking

model is effective in placing “effective” Boolean query

suggestions within the top 2 to 5 ranks.

In order to see how many new relevant documents (which were

not retrieved by the baseline) are discovered and how many old

relevant documents (which were retrieved by the baseline) are

missed, by the best Boolean query within the top-n, we measure

the ratios of the numbers of the new and missed old relevant

documents to the number of all relevant documents (see “Missed

Old Rel” and “New Rel” columns in Table 3). Generally, the more

effective Boolean queries identified, the more new relevant

documents are discovered while the less old relevant documents

are missed. Specifically, for the best query in the top-10

suggestions, the number of newly discovered relevant documents

is greater than that of missed old relevant documents. In addition,

the difference between unigram and unigram+bigram queries is

not significant.

Figures 5 and 6 depict scatter plots for the top-10 unigram and

unigram+bigram Boolean queries in USPAT and OHSUMED,

respectively. In Figure 5, the points on or above the diagonal line

indicate effective Boolean queries (performing identical to or

better than the baseline). The section from 0.0 to 0.1 in the x-axis

contains many queries performing poorly. However, effective

Boolean queries are also identified and some of them are superior

to the low baseline. Also, there are many effective Boolean

queries over the baseline performing moderately (0.1 ~ 0.7). In

Figure 6, there are fewer poorly-performing queries (0.0 ~ 0.1),

and most points are distributed between 0.1 and 0.9 in the x-axis.

Along the diagonal line, effective queries in Figure 6 are more

spread out than those of Figure 5. Although many Boolean queries

underperform the baselines in both plots, our system is promising

because effective queries can be identified by searchers in real

environments.

Figure 7 depicts the accumulated length of the top-n query results

which means the number of unique documents in all the results by

the top-n queries. This is related to the efficiency of our system in

the investigation, i.e., how long it takes to complete the task.

Patent searchers generally examine maximally 600 patents to

accomplish a single task (i.e., topic) [1]. In Figure 7, less than 500

unique documents accrue in the top-10 suggestions, which means

that our suggestions can return a practical number of documents.

Besides, since unigram+bigram queries return fewer documents

than unigram queries, the coverage by unigram+bigram queries

appears narrower.

5.2.3 Qualitative Analysis
We now provide a qualitative analysis of our system via real

examples. Table 4 shows the top 5 Boolean queries suggested by

our system, for a sample topic in USPAT. In this topic, the

baseline system shows moderate performance (0.30 for R@100,

0.10 for F1@100), and some suggestions outperform the baseline.

Many Boolean queries retrieve less than 100 documents, and

some long suggestions (e.g., power unit ⋀ air conditioner ⋀

output ⋀ inverter ⋀ circuit) can precisely retrieve relevant

documents in the short result lists. Several suggestions return

significantly more relevant documents. The suggested Boolean

queries can provide reasonable query contexts. For example,

“compressor” is often combined with “inverter”, “supply”,

“circuit” in Table 4 because compressor driving apparatus can

Figure 7: Average number of accumulated unique documents

over the top-n Boolean queries. „u‟ and „b‟ indicate the

results of unigram training examples and of bigram training

examples, respectively. „PAT‟ and „MED‟ denote the USPAT

and the OHSUMED collections, respectively.

Figure 5: Scatter plot of the top-10 Boolean queries in

USPAT. The x-axis represents R@100 of the baseline queries.

A circle and a cross mean a unigram query and a

unigram+bigram query, respectively.

Figure 6: Scatter plot of the top-10 Boolean queries in

OHSUMED. The x-axis represents R@100 of the baseline

queries. A circle and a cross mean a unigram query and a

unigram+bigram query, respectively.

include power supply, inverter drivers and storage circuits. Also,

looking at the negated terms, professional searchers can recognize

where negation is applied in the provided context. For example,

“power unit” is negated when it comes with “air conditioner”,

“output”, “inverter”, and “circuit” in Table 4. Since we found that

past cited patents are dealing with inverters or circuits for air

conditioners, power supplies can be considered less important.

6. CONCLUSION
We proposed a framework to automatically suggest Boolean

queries to assist professional searchers. We defined professional

search as recall-oriented interactive tasks performed by

information professionals. In order to provide reasonable

suggestions in this context, we first generate a sufficient number

of Boolean queries by exploiting decision tree learning and

pseudo-relevant documents. To provide a reasonable number of

suggestions, we rank the generated queries by a query ranking

model using query quality predictors. In experiments, we

simulated professional search processes in the patent and medical

domains with our suggestion system. We found that our system

can not only generate many effective Boolean queries but also

select highly effective queries for suggestion. For future work, we

plan to conduct experiments on the legal domain (e.g., finding

relevant cases). Also, we will consider adding synonym structure

into the current suggestion framework.

7. ACKNOWLEDGMENTS
This work was supported in part by the Center for Intelligent

Information Retrieval and in part by NSF CLUE IIS-0844226.

Any opinions, findings and conclusions or recommendations

expressed in this material are the authors' and do not necessarily

reflect those of the sponsor.

8. REFERENCES
[1] H. Joho, L. Azzopardi, and W. Vanderbauwhede. A Survey

of Patent Users: an analysis of tasks, behavior, search

functionality and system requirement In 3rd Symposium on

Information Interaction in Context, 2010.

[2] L. Azzopardi, W. Vanderbauwhede, and H. Joho. Search

System Requirements of Patent Analysts. In SIGIR '10, 2010.

[3] Y. Tseng and Y. Wu. A study of search tactics for

patentability search: a case study on patent engineers. In 1st

workshop on Patent Information Retrieval, 2008.

[4] R. Bache and L. Azzopardi. Improving access to large patent

corpora. Transactions on Large-Scale Data and Knowledge-

Centered Systems II (LNCS), 2010.

[5] H. Turtle. Natural language vs. Boolean query evaluation: a

comparison of retrieval performance. In SIGIR '94, 1994.

[6] X. Xue and W. B. Croft. Transforming patents into prior-art

queries. In SIGIR '09, 2009.

[7] X. Xue and W. B. Croft. Automatic query generation for

patent search. In CIKM '09, 2009.

[8] A. Fujii, M. Iwayama, and N. Kando. Overview of the patent

retrieval task at the NTCIR-6 workshop. In NTCIR-6, 2007.

[9] H. Mase and M. Iwayama. NTCIR-6 Patent Retrieval

Experiments at Hitach. In NTCIR-6, 2007.

[10] M. Lupu, F. Piroi, X. Huang, J. Zhu, and J. Tait. Overview of

the TREC 2009 Chemical IR Track. In TREC-18, 2009.

[11] J. Gobeill, D. Teodor, E. Patsche, and P. Ruch. Report on the

TREC 2009 Experiments: Chemical IR Track. In TREC-18,

2009.

[12] J. Rocchio. Relevance feedback in information retrieval. In

The Smart Retrieval System – Experiments in Automatic

Document Processing. Prentice-Hall, 1971.

[13] M. Mitra, A. Singhal, and C. Buckley. Improving automatic

query expansion. In SIGIR '98, 1998.

[14] J. Xu. Improving the effectiveness of information retrieval

with local context analysis. In ACM Transactions on

Information Systems, 18(1), 2000.

[15] R. White, M. Bilenko, and S. Cucerzan. Studying the use of

popular destinations to enhance web search interaction. In

SIGIR '07, 2007.

[16] R. A. Baeza-Yates, C. A. Hurtado, and M. Mendoza. Query

recommendation using query logs in search engines. In

EDBT workshops, 2004.

[17] R. Jones, B. Rey, O. Madani, and W. Greiner. Generating

query substitutions. In WWW '06, 2006.

[18] X. Wang and C. Zhai. Mining term association patterns from

search logs for effective query reformulation. In CIKM '08,

2008.

[19] Z. Hashmi, T. Zrimec, and A. Hopkins. Automatic query

generation from computerized clinical guidelines.

International Journal of Information Studies, 1(4), 2009

[20] S. Russell and P. Norvig. Artificial Intelligence: A Modern

Approach. Prentice Hall, 2010.

[21] S. Cronen-Townsend, Y. Zhou, and W. B. Croft. Predicting

Query Performance. In SIGIR '02, 2002.

[22] Y. Zhao, F. Scholer, and Y. Tsegay. Effective Pre-retrieval

Query Performance Prediction Using Similarity and

Variability Evidence. In ECIR '08, 2008.

[23] B. He and I. Ounis. Inferring query performance using pre-

retrieval predictors. In 18th Symposium on String Processing

and Information Retrieval, 2004.

[24] G. Kumaran and V. Carvalho. Reducing Long Queries Using

Query Quality Predictors. In SIGIR '09, 2009.

[25] V. Dang, M. Bendersky and W. B. Croft. Learning to Rank

Query Reformulations. In SIGIR '10, 2010.

[26] T. Joachims, Optimizing Search Engines Using Clickthrough

Data In KDD'02, 2002.

[27] W. R. Hersh, C. Buckley, T. J. Leone, and D. H. Hickam.

OHSUMED: an interactive retrieval evaluation and new

large test collection for research. In SIGIR '94, 1994.

[28] T. Strohman, D. Metzler, H. Turtle, and W. B. Croft. Indri: a

language-model based search engine for complex queries

(extended version). CIIR Technical Report, 2005.

[29] C. Zhai and J. Lafferty. A study of smoothing methods for

language models applied to adhoc information retrieval. In

SIGIR '01, 2001.

