
A Boosting Approach to Improving Pseudo-Relevance
Feedback

Yuanhua Lv
Dept of Computer Science

University of Illinois at
Urbana-Champaign
ylv2@uiuc.edu

ChengXiang Zhai
Dept of Computer Science

University of Illinois at
Urbana-Champaign

czhai@cs.uiuc.edu

Wan Chen
∗

Wolfram Research, Inc.
100 Trade Center Drive

Champaign, IL
wanc@wolfram.com

ABSTRACT
Pseudo-relevance feedback has proven effective for improv-
ing the average retrieval performance. Unfortunately, many
experiments have shown that although pseudo-relevance feed-
back helps many queries, it also often hurts many other
queries, limiting its usefulness in real retrieval applications.
Thus an important, yet difficult challenge is to improve
the overall effectiveness of pseudo-relevance feedback with-
out sacrificing the performance of individual queries too
much. In this paper, we propose a novel learning algo-
rithm, FeedbackBoost, based on the boosting framework
to improve pseudo-relevance feedback through optimizing
the combination of a set of basis feedback algorithms us-
ing a loss function defined to directly measure both robust-
ness and effectiveness. FeedbackBoost can potentially ac-
commodate many basis feedback methods as features in the
model, making the proposed method a general optimization
framework for pseudo-relevance feedback. As an applica-
tion, we apply FeedbackBoost to improve pseudo feedback
based on language models through combining different doc-
ument weighting strategies. The experiment results demon-
strate that FeedbackBoost can achieve better average pre-
cision and meanwhile dramatically reduce the number and
magnitude of feedback failures as compared to three repre-
sentative pseudo feedback methods and a standard learning
to rank approach for pseudo feedback.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval
models, query formulation, relevance feedback

General Terms
Algorithms

Keywords
Pseudo-relevance feedback, FeedbackBoost, loss function,
robustness, learning, optimization, boosting

∗This work was done when Wan Chen was with University
of Illinois at Urbana-Champaign.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’11, July 24–28, 2011, Beijing, China.
Copyright 2011 ACM 978-1-4503-0757-4/11/07 ...$10.00.

1. INTRODUCTION
Pseudo-relevance feedback has proven effective for auto-

matically improving the overall retrieval accuracy and aver-
age precision for informational queries in many experiments
[24, 22, 25, 3, 23, 15, 31, 18]. The basic idea of pseudo feed-
back is to assume a certain number of top-ranked documents
from an initial retrieval run to be relevant and extract useful
information from these feedback documents to improve the
original query.

However, although traditional pseudo feedback techniques
generally improve retrieval performance (e.g., AP) on aver-
age, they are not robust in the sense that they tend to help
some queries, but hurt other queries [10, 7], limiting its use-
fulness in real retrieval applications. Thus an important,
yet difficult challenge is to improve the overall effectiveness
of pseudo-relevance feedback without sacrificing the perfor-
mance of individual queries too much. Although there has
been a lot of work on pseudo feedback, little work has been
devoted to address this issue, with only a few exceptions,
e.g., [7]. In [7], the authors tried to reduce feedback failures
in a constrained optimization approach. However their work
was only able to optimize an objective function loosely re-
lated to the effectiveness and robustness of pseudo feedback.

In this paper, we propose a novel learning algorithm, Feed-
backBoost, based on the boosting framework to improve
pseudo-relevance feedback through combining a set of basis
feedback algorithms optimally using a loss function defined
to directly measure both robustness and effectiveness, which
has not been achieved in any previous work on pseudo feed-
back. Specifically, like all other boosting algorithms [9, 26,
8, 30], FeedbackBoost iteratively selects and combines ba-
sis feedback methods. In each iteration, a basis feedback
method is selected to improve those queries on which the
already selected basis feedback methods perform poorly in
terms of both effectiveness and robustness. At last, Feed-
backBoost uses a linear combination of these basis feedback
methods as its final feedback model.

There are several important differences between our work
and previous work on improving pseudo feedback: (1) we
cast the pseudo feedback problem as an optimization prob-
lem that can be solved in a supervised way; (2) we propose a
novel objective function that directly measures the effective-
ness and the number of failure cases of pseudo feedback; (3)
FeedbackBoost can incorporate potentially many different
basis feedback methods as features in the model, making it
a general optimization framework for pseudo feedback; (4)
FeedbackBoost does not introduce any extra parameter that
needs to be manually tuned.

As an application, we apply FeedbackBoost to improve
pseudo feedback based on language models through com-
bining different document weighting strategies. One cause
of the low robustness and effectiveness in pseudo feedback is
that the feedback documents are simply assumed to be rel-
evant whereas in reality, not all of them are relevant. Thus
one way to improve pseudo feedback would be to assign ap-
propriate weights to these documents. Indeed, our previous
work [18] has already shown that with relevance-based doc-
ument weighting, the relevance model [15] tends to be more
robust and effective than alternative models for feedback
with language models. In the existing work, however, such
weighting is generally based on one heuristic or another, and
is not optimized directly to improve feedback. Our main idea
is to combine a variety of feedback methods each with a dif-
ferent strategy for document weighting under the framework
of FeedbackBoost. Although we only try to leverage feed-
back methods with different document weighting methods in
this work, the proposed boosting framework can potentially
accommodate many other basis feedback methods.
We evaluate our method using two representative large

test sets and compare FeedbackBoost with multiple baseline
methods. The experiment results demonstrate that the pro-
posed FeedbackBoost algorithm can improve average pre-
cision significantly and meanwhile reduce the number and
magnitude of feedback failures dramatically as compared to
two representative pseudo feedback methods based on lan-
guage models, the mixture model and the relevance model.
We also compare our algorithm with a recently proposed
constrained optimization approach to robust feedback, and
the results show that our method is more robust. In addi-
tion, we compare FeedbackBoost with a traditional learning
to rank approach applied for pseudo feedback and observe
that FeedbackBoost works clearly better.

2. RELATED WORK
Pseudo-relevance feedback has been shown to be effective

for various retrieval models [24, 22, 25, 3, 23, 15, 31, 18]. In
the vector space model, feedback is usually done by using the
Rocchio algorithm [24]. The feedback method in classical
probabilistic models is to select expansion terms primarily
based on the Robertson/Sparck-Jones weight [22]. A num-
ber of model-based pseudo feedback techniques have been
developed for the language modeling framework, including
the relevance model [15] and the mixture-model feedback
[31], which will be reviewed in Section 5.1.1 and 5.1.2 re-
spectively. Most existing pseudo feedback algorithms aim
at improving average precision alone but rarely address the
robustness issue. In contrast, our work attempts to improve
both average precision and robustness at the same time.
A few previous studies also attempted to improve the ro-

bustness of pseudo feedback [28, 27, 7]. Tao and Zhai [28]
used a regularized EM algorithm to reduce the parameter
sensitivity of the mixture-model feedback but did not mini-
mize the feedback failures. Soskin et al. [27] leveraged mul-
tiple relevance models [15] in a heuristic unsupervised way
to improve feedback performance. However, their method
is not guaranteed to optimize the combination of feedback
algorithms. Collins-Thompson [7] also tried to reduce feed-
back failures in an optimization framework. However this
work was only able to optimize an objective function loosely
related to the robustness of pseudo feedback. In contrast,
we propose a general machine learning framework to directly

optimize both the robustness and effectiveness of pseudo
feedback, which can incorporate existing methods, such as
[28], [27], and [7], as features. In this sense, our work offers
a unified framework that can be used to potentially combine
all the existing pseudo feedback methods.

Selective feedback [2] and adaptive feedback [17] are an-
other stream of work to improve the robustness of pseudo
feedback, where the idea is to disable query expansion if
query expansion is predicted to be detrimental to retrieval [2]
or to adaptively set the amount of query expansion in a per-
query way [17]. However, these methods are not as general
as our proposed framework. Besides, our work and the se-
lective/adaptive feedback method are complementary in the
following sense: our work can construct a strong ensemble
feedback method, which can be used by selective/adaptive
feedback to further improve its performance, while selec-
tive/adaptive feedback methods can be incorporated into
our framework as features for boosting.

Recently, learning to rank [13, 8, 4, 30, 6, 33, 16] has
attracted much attention in IR. Our work can also be re-
garded a novel use of machine learning to leverage multiple
feedback-related features to improve ranking. However, a
main difference of our work from traditional work on learn-
ing to rank is that we design a novel learning algorithm to di-
rectly optimize both robustness and effectiveness of pseudo
feedback (novel objective function). Another difference is
that most learning to rank work learns optimal ways to
combine retrieval functions but fails to improve the query
representation. Our work, however, uses machine learning
to improve a content-based query representation. Therefore,
our study is orthogonal to the existing learning to rank work,
and existing learning to rank algorithms can be used to learn
a retrieval function on the basis of our improved query rep-
resentation to further improve retrieval performance.

Machine learning was also introduced to improve pseudo
feedback through selecting good expansion terms [5] or good
feedback documents [12]. However, neither work attempted
to directly optimize robustness of pseudo feedback.

Boosting is a general method for improving the accuracy
of supervised learning. The basic idea of boosting is to re-
peatedly construct “weak learners” by re-weighting training
data and form an ensemble of weak learners so that the to-
tal performance of the ensemble is “boosted”. Freund and
Schapire have proposed the first and most popular boosting
algorithm called AdaBoost for binary classification [9]. Ex-
tensions of boosting have been made to deal with the prob-
lems of multi-class classification [26], ranking [8, 30, 33], etc.
Our work can be viewed as a novel extension of the boosting
framework to improve pseudo-relevance feedback.

3. PROBLEM FORMULATION
Given a query qi and a document collection C, a re-

trieval function F returns a ranked list of m documents
d = {d1, · · · , dm}, where dj denotes the j-th ranked doc-
ument in the ranked list. In pseudo feedback, we assume
the top-n documents are “relevant”, and construct a feed-
back model ϕt(qi,d, n, C), or ϕt(qi) for short, for query qi
by exploiting those assumed “relevant” documents. Here ϕt

can be any pseudo feedback method that is able to output
an improved query representation, and we call it a weak or
basis feedback method; ϕt(qi) is essentially an expanded rep-
resentation of the original query qi, and we call it a weak or
basis feedback model for qi. In general, the format of ϕt(qi)

0 10 20 30 40

70
0

71
0

72
0

73
0

74
0

75
0

Feature ID

Te
ra

by
te

04
 q

ue
ry

 to
pi

c

Figure 1: Plot of each query w.r.t. different weak
feedback methods, where ‘•’ indicates that the cor-
responding weak feedback improves performance.

would depend on the retrieval function F ; for example, in
the vector space model, ϕt(qi) is represented as a vector of
weighted terms, while in language modeling approaches, it
is represented as a word distribution. We can use ϕt(qi) as
the new query and apply F to retrieve another ranked list
of documents d′.
Given a performance measure E and the relevance judg-

ments set J(qi) for query qi, we can compute the perfor-
mance scores for the original query qi and for the expanded
query ϕt(qi), which will be denoted as E (F (qi), J(qi)) and
E (F (ϕt(qi)), J(qi)), respectively, and will be represented as
E(qi) and E(ϕt(qi)) in the rest of the paper for conciseness.
We choose the widely accepted average precision (AP) as the
performance measure E in this paper, though the proposed
algorithm can in principle also work with other measures.
Although many pseudo feedback methods have been shown

to improve the performance of a retrieval system on average,
they all share a common deficiency, i.e., the average perfor-
mance gain always comes inevitably at the cost of (some-
times significantly) degraded performance of some queries.
That is, while on average, 1

|Q|
∑|Q|

i=1 E(ϕ(qi)) > 1
|Q|
∑|Q|

i=1 E(qi),
it is almost always the case that for some queries, E(ϕ(qj)) <

E(qj). Indeed, it has been a long-standing difficult challenge
to improve the robustness of pseudo feedback so that we can
improve average performance without sacrificing the perfor-
mance of individual queries too much.
In this paper, we propose to use a learning method to ad-

dress this problem. Specifically, given a query qi, we assume
there are a variety of basis feedback models ϕk(qi) based
on different feedback methods Φ = {ϕ1, · · · , ϕm}, and our
main idea is to combine a set of such basis feedback models
ϕk(qi) into a single feedback model H(qi) called the final or
combined feedback model to reduce feedback failures:

H(qi) =
t∑

k=1

αkϕk(qi) (1)

A linear combination is chosen because the final feedback
model H(qi) should be in the same format as that of each
basis model ϕk(qi); that is, if ϕk(qi) is a vector of weighted
terms, so is H(qi), while if ϕk(qi) is a language model, H(qi)
should also be a language model by normalizing the learned
αk (k = 1, · · · , t) to make them sum to 1.
Our main motivation of combining multiple feedback meth-

ods is that different basis feedback methods often have rela-
tive strengths for different query topics and thus are comple-
mentary to each other. To illustrate it, we examine 46 ba-

sis feedback methods constructed using methods described
in Section 5. The results are presented in Figure 1. We
can see that many feedback methods indeed have relative
strengths on different queries (e.g., topic 708 and 709). It
seems there are only 3 very hard queries that no feedback
method can help, while for other queries, there are always
some successful feedback methods. Thus, constructing an
ensemble feedback method H would be an effective strat-
egy to reduce feedback loss. For example, suppose we have
two weak feedback methods ϕ1 and ϕ2; ϕ1 improves 0.2 and
−0.1 (i.e., decreases by 0.1) on q1 and q2 respectively, while
ϕ2 improves −0.1 and 0.2 on q1 and q2 respectively. So the
fbloss scores are 0.5 for both ϕ1 and ϕ2 on these two queries.
However, an ensemble method α1ϕ1 +α2ϕ2 would probably
have 0 fbloss while still achieving better or comparable av-
erage improvement if the combination coefficients α1 and α2

are chosen appropriately.
Our goal is to minimize the number of query instances

for which the retrieval performance is decreased by the final
feedback model H(qi) as compared to the original query qi.
The learning algorithm that we study attempts to find an H
with a small number of query failures, a quality called the
feedback loss and denoted by fblossD(H). Formally,

fblossD(H) =

|Q|∑
i=1

D(qi) · I{E(H(qi)) < E(qi)} (2)

Here and throughout this paper, the indicator function I{π}
is defined to be 1 if the predicate π holds and 0 otherwise.
D(qi) is the weight of qi, and we set it initially to uniform,
i.e., D(qi) = 1/|Q| so that all queries are equally important;
later the query weights would be updated iteratively in a
boosting framework [9] so that queries that do not perform
well would contribute more to the loss function more. We
will also show later in Section 4.1 that the feedback loss can
be bounded by the degradation of retrieval precision, which
means that the feedback loss can actually measure both feed-
back failures and retrieval effectiveness, which is necessary
in order to ensure both robustness and effectiveness.

In the following section, we will discuss how to optimize
the combination of weak feedback methods so as to minimize
fbloss on some training data, formally,

argmin
{α1:t}

|Q|∑
i=1

D(qi) · I
{
E(

t∑
k=1

αk · ϕk(qi)) < E(qi)

}
(3)

4. A BOOSTING APPROACH TO IMPROV-
ING PSEUDO FEEDBACK

With only a few basis feedback methods, it is possible
to optimize their combination through manual parameter
tuning. However, manual tuning is infeasible if there are
many basis feedback methods as is often the case. Inspired
by the AdaBoost [9], we devise a boosting approach, referred
to as “FeedbackBoost”, to solve this problem.

4.1 Minimizing Feedback Loss via Forward
Stagewise Additive Modeling

Ideally we want to minimize the feedback loss on the train-
ing data as shown in Equation 3. However, it is difficult to
solve this optimization problem because the combination is
inside a retrieval function and not differentiable. To simplify
this problem, we make an assumption that the feedback loss

of the combined feedback H is less than or equal to that of a
linear performance combination of the corresponding basis
feedback methods. Formally,

|Q|∑
i=1

D(qi) · I
{
E(

t∑
k=1

αk · ϕk(qi)) < E(qi)

}

≤
|Q|∑
i=1

D(qi) · I
{[

t∑
k=1

αk∑t
j=1 αj

E(ϕk(qi))

]
< E(qi)

} (4)

Although we have not found a theoretical proof for the
above inequality, we can empirically guarantee this assump-
tion to be true in our algorithms since we can automatically
adjust the algorithms to make sure this assumption holds (as
shown in the step 5 of the pseudo code of the algorithm).
In practice, this assumption turns out to work well. One
possible explanation is that different feedback models often
complement to each other, so the performance of a mixture
model with reasonable coefficients is often better than the
performance of any single model and thus also better than
the weighted average performance of these single models.
An example is that an appropriate interpolation of a pseudo
feedback model and the original query model usually works
better than either single model [31, 1, 18]. Thus we will
minimize the following upper bound of the feedback loss.

argmin
{α1:t}

|Q|∑
i=1

D(qi)I

{
t∑

k=1

αkE(ϕk(qi)) <
t∑

k=1

αkE(qi)

}
(5)

However the above optimization problem is still hard to han-
dle, because the indicator function I is non-continuous. For-
tunately, we know that I{x < y} ≤ ey−x for all real x and
y, so, instead of solving Equation 5 directly, we can alterna-
tively minimize its upper bound below, which is essentially
a measure of retrieval performance degradation.

argmin
{α1:t}

|Q|∑
i=1

D(qi) exp

(
t∑

k=1

αkE(qi)−
t∑

k=1

αkE(ϕk(qi))

)
(6)

Now we can address this problem using forward stage-
wise additive modeling, which is an effective strategy to
find an approximate solution to an optimization problem
through sequentially adding new basis method without ad-
justing those already selected methods [11]. By forward
stagewise additive modeling, the above formula can be ex-
pressed as follows where we would iteratively choose αt and
ϕt, as well as adjust Dt(qi):

argmin
{αt,ϕt}

|Q|∑
i=1

Dt(qi) · exp (αt · [E(qi)− E(ϕt(qi))]) (7)

where

Dt(qi) ∝
Dt−1(qi) · exp (αt−1 · [E(qi)− E(ϕt−1(qi))])

Zt
(8)

Here, Zt is a normalization factor to make Dt a distribution;
such a normalization operation does not affect the choosing
of αt and ϕt, since Dt depends neither on αt nor ϕt in the
forward stagewise additive modeling [11]. Dt is defined in
a recursive way, where D1(qi) = D(qi) = 1/|Q| is the initial
weight for query qi. After T iterations, we can obtain the
desired combined feedback model as H(qi) =

∑T
t=1 αtϕt.

Algorithm 1 The FeedbackBoost algorithm

Input:

Query set {qi, J(qi)}
|Q|
i=1, retrieval model F , retrieval perfor-

mance measure E, and the number of iterations T ;
A set of basis feedback methods Φ = {ϕ1, · · · , ϕm};
Initial distribution D1 over training queries: D1(i) = 1/|Q|;

Output:
1: for t = 1, 2, · · · , T do
2: Select basis feedback method ϕt with weighted distribution

Dt on training queries using Formula 14; if there is no ϕt

selected, break;
3: Compute Elosst(ϕt) using Formula 9.
4: Choose αt based on Formula 12 and Elosst(ϕt).
5: While the inequality in Formula 4 does not hold, goto step

2 and choose the next optimal basis feedback as ϕt; if there
is no ϕt that satisfies the inequality, break;

6: Update Dt+1 using Formula 8;
7: end for
8: Output the final feedback: H =

∑T
t=1 αtϕt;

4.2 FeedbackBoost
FeedbackBoost is designed to find a solution to the opti-

mization problem in Formula 7 using a boosting approach.
Specifically, like all other boosting algorithms, Feedback-
Boost operates in rounds. At each round, we calculate a
distribution of weights over training queries. In fact, Dt

can be regarded as a weight that is applied to each query
after t − 1 iterations. From Equation 8, we can see that
Dt will put more weights on queries that are hurt more by
previously selected basis feedback methods.

We next select a basis feedback method ϕt that works well
on those highly-weighted queries, and the selection of this
basis feedback method is to optimize an objective function
that is defined to directly measure the feedback loss. Specif-
ically, we define the weighted performance degradation of ϕ
at iteration t as

Elosst(ϕ) =

|Q|∑
i=1

Dt(qi) · (E(qi)− E(ϕ(qi))) (9)

And the feedback method ϕt with the minimum Elosst will
be selected. Theoretical analysis is provided as follows:

The performance measure E, e.g., AP in this paper, is
usually within range [0, 1]. Even a measure is beyond this
range, we can still normalize it to [0, 1]. Therefore, for any
basis feedback method ϕt, we have the performance degra-
dation E(qi)−E(ϕt(qi)) ∈ [−1, 1]. By the convexity of eαx as
a function of x when x ∈ [−1, 1] [8], we thus have

exp (αt[E(qi) − E(ϕt(qi))]) ≤
(

1 + E(qi) − E(ϕt(qi))

2

)
exp(αt)

+

(
1 − E(qi) + E(ϕt(qi))

2

)
exp(−αt)

(10)

So Equation 7 can be approximated by

argmin
{αt,ϕt}

1 + Elosst(ϕt)

2
exp(αt) +

1− Elosst(ϕt)

2
exp(−αt) (11)

We can easily minimize this equation by setting

α∗
t =

1

2
log

1− Elosst(ϕt)

1 + Elosst(ϕt)
(12)

which indeed makes sense since it suggests that a ϕt with
less performance degradation will receive a larger weight αt.

Then, by plugging Equation 12 into 11, we obtain the fol-
lowing optimal basis feedback.

ϕ∗
t = argmin

{ϕt}

√
(1− Elosst(ϕt))(1 + Elosst(ϕt)) (13)

We can see that Equation 13 is minimized when Elosst(ϕt)
is close to 1 or −1. With respect to the former case, we
would choose a ϕt with the largest weighted performance
degradation, and αt will be negative, which, however, does
not make sense: if a pseudo feedback ϕt leads to large per-
formance degradation, a negative αt may not make ϕt work
well. Therefore, Elosst(ϕt) should be negative to keep the
coefficient αt positive. So we choose a basis pseudo feedback
ϕt with the smallest negative Elosst so far.

ϕ∗
t = argmin

{ϕt}
{Elosst(ϕt)} subject to Elosst(ϕt) < 0 (14)

4.3 Algorithm Summary
To summarize, FeedbackBoost works as follows. The in-

put to the algorithm includes a set of queries and relevance

judgments {qi, J(qi)}|Q|
i=1, a set of basis feedback methods

Φ = {ϕ1, · · · , ϕm}, a document collection C, a retrieval func-
tion F , a retrieval performance measure E, and the iteration
number T . FeedbackBoost works in an iterative way: dur-
ing each iteration t, a basis feedback method ϕt is chosen
based on its performance on training data with weight dis-
tribution Dt, i.e., Elosst(ϕt). Also the coefficient αt of ϕt is
calculated based on Elosst(ϕt). After that, the query weight
distribution Dt is updated by increasing weights on queries
for which ϕt performs poorly, leading to a new distribution
Dt+1; Dt+1 will be used in the next iteration to select ϕt+1

and αt+1. At last, the final feedback model H is created by
linearly combining all the selected basis feedback methods.
A sketch of the algorithm flow is shown in Algorithm 1.

5. APPLICATION OF FEEDBACKBOOST
TO LANGUAGE MODELS

In order to apply FeedbackBoost, the main task is to de-
sign appropriate basis feedback methods {ϕ}. A basis feed-
back method ϕk generally consists of three components: a
weighting function hk to assign weights to feedback docu-
ments, a weighting function gk to calculate the importance
of different expansion terms, and the retrieval model F to
decide the representation format of the feedback model. For-
mally, ϕk = f(hk, gk, F). Given a retrieval model F , one feed-
back method differs from others often because it uses differ-
ent document and/or term weighting functions [18]. We can
thus naturally construct many basis feedback methods by
varying the document and/or term weighting functions.

5.1 Basis Pseudo Feedback Methods based on
Language Models

As a specific application, here we discuss how we can apply
FeedbackBoost to improve pseudo feedback under the lan-
guage modeling framework through combining different doc-
ument weighting strategies. This application is especially
interesting because (1) language models deliver state of the
art retrieval performance [21, 14]; (2) feedback document
weighting has been shown to be a critical factor affecting ro-
bustness and effectiveness of pseudo feedback methods [18].
However, our methodology could be applicable to other re-
trieval models and to optimizing term weighting methods as
well, which we leave as future work.

We use the KL-divergence retrieval method [14] as our
retrieval model (i.e., F), which scores a document d with re-
spect to a query q by computing the negative KL divergence
between the query and the document language model:

S(q, d) = −
∑
w∈q

P (w|q) log
P (w|q)
P (w|d)

(15)

Two important instantiations of basis pseudo feedback meth-
ods in language models are the relevance model [15] and the
mixture model [31], which are among the most effective and
robust feedback techniques based on language models [18].

5.1.1 Relevance Model
The relevance model ϕr essentially uses the query likeli-

hood as the weight for document d and takes an average
of the probability of word w given by each document lan-
guage model. Formally, let Θ represent the set of smoothed
document models in the pseudo feedback collection Ω =
{d1, · · · , dn}. The formula of the relevance model is:

P (w|ϕr(q)) ∝
∑

θd∈Θ

P (w|θd)
∏

w′∈q

P (w
′|θd) (16)

Let’s denote the original query model as P (w|q). The
relevance model P (w|ϕr(q)) can be interpolated with the
original query model P (w|q) to improve performance using a
interpolation coefficient α. In this paper, we will use the fol-
lowing interpolated model P (w|θq) as the new query model,
which is often called RM3 [1]:

P (w|θq) = (1 − α)P (w|q) + αP (w|ϕr(q)) (17)

In Equation 16, hr(d) =
∏

w′∈q P (w′|θd) is the query likeli-
hood score of document d, serving for document weighting,
and gr(w, d) = P (w|θd) works for term weighting. If we in-
stantiate the document weighting strategy in a different way,
e.g., h′

r, whereas the term weighting strategy is fixed to gr,
it will lead to a different “relevance model” ϕ′

r. Formally

P (w|ϕ′
r(q)) ∝

∑
θd∈Θ

P (w|θd) · h′
r(d) (18)

which can also be used for feedback after a similar interpola-
tion. Following this way, we can construct a set of relevance-
model style basis feedback methods by varying their docu-
ment weighting strategies.

5.1.2 Mixture Model
In the simple two-component mixture model (SMM) ϕm,

the words in Ω are assumed to be drawn from two mod-
els: (1) background model P (w|C) and (2) topic model
P (w|ϕm(q)). Thus the log-likelihood for the entire set of
feedback documents is:

logP (Ω|ϕm(q)) =
∑
w∈V

c(w,Ω) log((1 − λ)P (w|ϕm(q)) + λP (w|C))

(19)

where V is the word vocabulary, c(w,Ω) is the count of word
w in feedback document set Ω, and λ ∈ [0, 1] is the mixture
parameter. The estimate of ϕm(q) can be computed using
the EM algorithm to maximize the log-likelihood. Finally,
ϕm(q) is also interpolated with the original query model
P (w|q) to update the query model with a coefficient α. We
notice in Formula 19 that

c(w,Ω) =
∑
d∈Ω

|d| · P (w|d) (20)

It means that the document length |d| is used as a weight
of document d (i.e., hm(d) = |d|) to sum over the term

evidence from each feedback document. As in the case of
the relevance model, we can also use any other document
weighting method h′

m to replace hm while keeping gm the
same, which will lead to a new family of mixture-model style
basis feedback method ϕ′

m.

5.2 Document Weighting Strategies
We next introduce a set of document weighting strategies

{ht}. As we have discussed, each of them can be plugged
into the relevance model (Section 5.1.1) or the mixture model
(Section 5.1.2), leading to a new basis feedback method ϕt.
Relevance Score: Relevance score is shown to be a criti-

cal factor for feedback document weighting in a recent work
[18]. We explore the use of query likelihood [21] h1 and
BM25 score [23] h2 for document weighting: w.r.t. the for-
mer, the Dirichlet smoothing method [32] with µ = 1, 000
is used to smooth the document language model; w.r.t. the
latter, we fix k1 = 1.2, b = 0.5, and k3 = 1, 000.
Document Novelty: We estimate a novelty score for

each document to reward novel information. Three different
methods are proposed: (1) The distance between the cen-
troid of all feedback documents h3(di) = 1−cosim(d⃗i,

1
k

∑k
j=1 d⃗j),

where ‘cosim’ stands for cosine similarity; (2) The distance
between the centroid of all feedback documents ranked be-
fore the document h4(di) = 1− cosim(d⃗i,

1
i−1

∑i−1
j=1 d⃗j). (3) The

distance between the most similar document ranked before
the document: h5(di) = 1 − maxi−1

j=1{cosim(d⃗i, d⃗j)}.
Query Term Proximity: Query term proximity has

been largely ignored in traditional retrieval models [23, 21].
We use the recently proposed positional language model [19]
and the minimum pair distance [29] to capture term proxim-
ity for improving document weighting: (1) we compute a po-
sitional query likelihood score based on the “best-matching”
position [19], i.e., h6(d) = max

|di|
j=1

∏
w∈q P (w|d, j)c(w,q), where

c(w, q) is the count of w in q, and we follow work [17] to
estimate the positional language model P (w|d, j); (2) we use
the normalized minimum pair-wise distance proposed in [29]
by setting α = 1 which prevents negative document weights,
i.e., h7(d) = log(α + exp(−δ(q, d))).
Document Length: Though the heuristic of document

length normalization has been incorporated into the rele-
vance scores [23, 32], we still list it here because it was
explicitly used in some existing pseudo feedback methods
[18]: (1) raw document length: h8(d) = |d|; (2) reciprocal
of the raw document length: h9(d) = 1/h8(d); (3) Dirich-
let document length: h10(d) = |d|/(|d| + µ), where we set
µ = 1, 000; (4) reciprocal of the Dirichlet document length:
h11(d) = 1/h10(d).
Besides the above basic document weighting methods, for

each ht, we also introduce some of their variations as our
document weighting, including exp(ht), (ht)

2, and
√
ht. Also

we include log(h2) and log(h8), since the values of h2 and h8

are usually larger than 1.0 for top-ranked documents. Over-
all, there are 46 methods in total, all of which are normalized
to sum to 1.0 for each query.

5.3 Implementation Details
We next apply the FeedbackBoost algorithm to learn an

ensemble feedback method. We denote Ed(ϕ(q)) as the score
of document d with respect to a basis feedback method ϕ on
query q. In fact, with the KL-divergence retrieval method
(Equation 15), we only need to retrieve and score documents
once for each basis feedback method. Then during the train-

ing process, if we need to score a document d using any
combined feedback H′ =

∑t
k=1 αkϕk, we can do it efficiently

by linearly combining the scores of the corresponding basis
feedback methods.

Ed(H
′
(q)) ∝

∑
w∈q

P

(
w|

t∑
k

αk∑t
j αj

ϕk(q)

)
logP (w|d)

=
∑
w∈q

[
t∑

k=1

αk∑t
j=1 αj

P (w|ϕk(q))

]
logP (w|d)

∝
t∑

k=1

αkEd(ϕk(q))

(21)

So training FeedbackBoost would be as efficient as training
general AdaBoost algorithm [9].

Besides, during the testing phase, H(q) can also be esti-
mated efficiently. For example, for the relevance model, we
can plug the ensemble document weighting method used in
H(q) into Formula 18 to replace h′

r(d) and estimate H(q)
directly; for the mixture model style H(q), we can also re-
place |d| with the combined document weighting methods in
Formula 20, which does not affect feedback performance in
the experiments. Hence, the efficiency of H(q) for pseudo
feedback would be comparable to that of basis feedback al-
gorithms, which is also confirmed empirically.

6. EXPERIMENTAL SETUP
We evaluate our method using the Terabyte Web dataset

and a large news dataset Robust04. Only title portions of
the topics are taken as queries. For each dataset, we split the
available topics into training, validate and test sets, where
the training set is used solely for training the algorithms,
the validate set is used for tuning the number of iterations
T , and the test set is used for evaluation purposes. Table
1 shows some document set statistics. The preprocessing of
the collections includes stemming using the Porter algorithm
and stopword removal using a standard InQuery stoplist.

We train two FeedbackBoost models: in the first one,
each basis feedback method implements a different docu-
ment weighting strategy proposed in Section 5.2, while all
of them use the same mixture-model style term weighting,
and thus we refer to it asBoostMM; in the second one, each
basis feedback method also implements a different docu-
ment weighting strategy but all of them share the relevance-
model style term weighting, thus the name BoostRM. That
is, we parameterize Φ in different ways for BoostRM and
BoostMM. This design allows us to meaningfully compare
BoostMM and BoostRM with the corresponding two base-
line feedback methods (i.e., SMM and RM3) and the basic
query language model without feedback (labeled as“NoFB”).
This set of experiments are mainly to compare Feedback-
Boost with traditional pseudo feedback methods. A main
hypothesis we would like to test is whether BoostMM and
BoostRM are indeed more robust than the corresponding
baseline SMM and RM3.

Furthermore, we also compare FeedbackBoost with two
other lines of baseline methods. In the first line, we compare
FeedbackBoost with another strong baseline representing a
recent work on improving robustness of pseudo feedback, i.e.,
the REXP-FB method [7]. In the second line, we are in-
terested in knowing if an existing learning to rank approach
can also improve both robustness and effectiveness as much
as FeedbackBoost does. So we introduce yet another base-
line AdaRank [30], which performed well [16]. AdaRank

Collection Description #Docs Training Topics Validate Topics Test Topics
Robust04 TREC disk 4&5 (minus CR) 528,155 301-450 601-650 651-700
Terabyte 2004 crawl of .gov domain 25,205,179 701-750 751-800 801-850

Table 1: Overview of TREC collections and topics

BoostMM Versus SMM

Collection Metric NoFB
fbDocCount = 20 fbDocCount = 50

SMM BoostMM SMM BoostMM

Validate

Robust04

MAP 0.2850 0.3215∗ 0.3447∗+ 0.2973 0.3468∗+

Pr@20 0.3310 0.3610 0.3790 0.3850 0.3850
RI n/a 0.3600 0.6400 (+77.8%) 0.0400 0.6000 (+1400%)

APloss n/a 0.6191 0.2877 (−53.5%) 1.3730 0.2815 (−79.5%)

Terabyte

MAP 0.3076 0.3477∗ 0.3701∗+ 0.3445∗ 0.3669∗+

Pr@20 0.5410 0.5570 0.5970 0.5540 0.5820
RI n/a 0.4400 0.7200 (+63.6%) 0.3200 0.6000 (+87.5%)

APloss n/a 0.6036 0.1667 (−72.4%) 0.6963 0.2433 (−65.1%)

Test

Robust04

MAP 0.2930 0.3265∗ 0.3511∗+ 0.3067 0.3453∗+

Pr@20 0.3796 0.4041 0.4143 0.3867 0.4082
RI n/a 0.3878 0.5102 (+31.6%) 0.2653 0.4286 (+61.6%)

APloss n/a 0.7108 0.3493 (−50.9%) 1.3429 0.4231 (−68.5%)

Terabyte

MAP 0.3012 0.3061 0.3331∗+ 0.3067 0.3298∗+

Pr@20 0.4878 0.4765 0.5255 0.4663 0.5112
RI n/a 0.1429 0.5102 (+257%) 0.1429 0.5102 (+257%)

APloss n/a 0.6438 0.1499 (−76.7%) 0.7546 0.2511 (−66.7%)

BoostRM Versus RM3

Collection Metric NoFB
fbDocCount = 20 fbDocCount = 50

RM3 BoostRM RM3 BoostRM

Validate

Robust04

MAP 0.2850 0.3431∗ 0.3450∗ 0.3430∗ 0.3490∗+

Pr@20 0.3310 0.3840 0.3800 0.3800 0.3880
RI n/a 0.2800 0.4800 (+71.4%) 0.3600 0.5200 (+44.4%)

APloss n/a 0.7084 0.5056 (−28.6%) 0.6421 0.4155 (−35.3%)

Terabyte

MAP 0.3076 0.3471∗ 0.3661∗+ 0.3466∗ 0.3628∗+

Pr@20 0.5410 0.5840 0.5890 0.5770 0.5740
RI n/a 0.5200 0.6800 (+30.8%) 0.4800 0.5600 (+16.7%)

APloss n/a 0.9042 0.2946 (−67.4%) 0.9458 0.4247 (−55.1%)

Test

Robust04

MAP 0.2930 0.3483∗ 0.3537∗+ 0.3462∗ 0.3488∗+

Pr@20 0.3796 0.4010 0.4122 0.4082 0.4082
RI n/a 0.3061 0.4286 (+40.0%) 0.3061 0.4694 (+53.3%)

APloss n/a 0.5736 0.3662 (−36.2%) 0.5184 0.4261 (−17.8%)

Terabyte

MAP 0.3012 0.3187 0.3287∗ 0.3188 0.3311∗+

Pr@20 0.4878 0.4939 0.5010 0.4980 0.5173
RI n/a 0.2245 0.3469 (+54.5%) 0.1837 0.3469 (+88.8%)

APloss n/a 0.6847 0.2797 (−59.1%) 0.6608 0.2614 (−60.4%)

Table 2: Comparison of BoostMM and BoostRM with SMM and RM3 respectively. Note that for APloss,
lower is better (negative change is good), while for RI, higher is better. ‘*’ and ‘+’ mean the MAP improve-
ment is statistically significant over NoFB and the corresponding baseline feedback method respectively. The
improvement of APloss and RI is shown for BoostMM/BoostRM relative to SMM/RM3.

attempts to learn a ranking function through directly opti-
mizing retrieval measures. One variation of AdaRank used
in our comparison is AdaRank.MAP, which tries to op-
timize MAP. Since it is non-trivial to directly optimize the
proposed fbloss using AdaRank, we further extend AdaRank
to optimize a loss function that is similar to fbloss: a novel
robustness-related measure E′ that measures the performance
degradation in feedback: E′(qi) = E

(∑t
k=1 αk · ϕk(qi)

)
−E(qi).

According to the Formula 6 in [30], AdaRank turns out
to minimize an exponential loss function

∑|Q|
i=1 exp

{
−E′(qi)

}
,

leading to a new runAdaRank.FB. Note that AdaRank.FB
is no longer the traditional AdaRank algorithm because the
loss function is novel, thus it is a very strong baseline.
We use the Dirichlet smoothing method [32] for all docu-

ment language models, where we set the µ = 1, 000. Besides,
as suggested in our previous study [18], we set the mixture
noise parameter λ to 0.9 for SMM and all the mixture-model
style basis feedback methods. We also set the number of ex-

pansion terms to 40. These parameter settings work well
and are used in our experiments unless otherwise stated.

It does not make sense to talk about fbloss alone, since
we can always get 0 loss for any feedback method by setting
the feedback coefficient α to 0. In the traditional evaluation
strategy [31, 18], people often tune α to optimize one re-
trieval precision measure. We thus follow such a strategy to
first optimize α in terms of MAP, on the basis of which we
then try to reduce fbloss. Specifically, we give a priority to
SMM and RM3 to optimize their feedback coefficient α on
the training, validate and test sets respectively. However,
for all the mixture-model style basis feedback methods, we
simply set the feedback coefficients to those optimized for
SMM, while for all the relevance-model style basis feedback
methods, we use RM3’s setting directly.

We are interested in both effectiveness and robustness of
pseudo feedback methods, so besides MAP (on top-ranked
1, 000 documents) and Pr@20, we also compare all runs in

Metric
fbDocCount = 20 fbDocCount = 50

AdaRank.MAP AdaRank.FB FeedbackBoost AdaRank.MAP AdaRank.FB FeedbackBoost
MAP 0.3451 0.3535 0.3537 0.3418 0.3485 0.3488
RI 0.3061 0.3878 0.4286 0.3061 0.3469 0.4694

APloss 0.9776 0.4333 0.3662 1.0033 0.6329 0.4261

Table 3: Comparison of FeedbackBoost, AdaRank.MAP, and AdaRank.FB on the test set of Robust04.
Note that AdaRank.FB is different from the traditional AdaRank algorithm, since it is armed with a novel
robustness-related loss function.

Collection NoFB-1 REXP-FB NoFB-2 BoostRM BoostMM

Robust04
MAP 0.2152 0.2451 0.2502 0.2617+ 0.2752+

RI n/a 0.3773 n/a 0.5100 0.5221

Terabyte
MAP 0.2736 0.3004 0.2901 0.3086+ 0.3230+

RI n/a 0.2624 n/a 0.5135 0.5270

Table 4: Comparison of FeedbackBoost and REXP-FB on the same collections, where cross-validation is used
for training. ‘+’ indicates that the improvement of MAP over NoFB-2 is statistically significant.

terms of two robustness measures, the robustness index (RI)
and the accumulative loss of retrieval performance (APloss).
RI = 1 − 2 · fbloss, is essentially a transformation of the
fbloss proposed in our paper; we show RI instead of fbloss
mainly because RI was often used in previous studies, e.g.,
[7]. APloss is to measure the feedback loss in a finer de-
gree, which is the accumulative AP degradation in failure
cases (since AP is used as E in our paper), defined as:
APloss =

∑|Q|
i=1 [E(qi) − E(H(qi))] · I{E(H(qi)) < E(qi)}

7. EXPERIMENT RESULTS

7.1 Performance of FeedbackBoost
Table 2 compares MAP, Pr@20, RI, and APloss for NoFB,

SMM, RMM, BoostMM, and BoostRM on the validate and
test sets. Note that each time all runs use the same set
of feedback documents to make the comparison fair; that
is, we fix the base ranking for all runs. Besides, the itera-
tion number T in FeedbackBoost is chosen to minimize the
corresponding fbloss on the validate sets. We also vary the
number of feedback documents from 20 to 50.
For all cases, we can see that BoostMM and BoostRM

significantly improve the robustness over SMM and RM3
respectively. For example, BoostMM reduces APloss as com-
pared with SMM by amounts ranging from 50.9% to 77.8%
when using 20 feedback documents and from 65.1% to 79.5%
when using 50 feedback documents. Moreover, BoostMM
and BoostRM also significantly improve MAP over SMM
and RM3 in almost all cases. The results demonstrate that
the FeedbackBoost algorithm does a good job to improve
robustness while still achieving better effectiveness. More-
over, FeedbackBoost works consistently well when we use
different number of feedback documents. The performance
of FeedbackBoost shows that it is effective to combine mul-
tiple feedback methods using our FeedbackBoost to improve
both robustness and effectiveness of pseudo feedback.
We next compare FeedbackBoost with AdaRank.MAP and

AdaRank.FB. These three algorithms are all trained on the
same set of relevance-model style basis feedback methods.
The iteration number for all the algorithms are chosen to
minimize fbloss on the validate set. We present the experi-
ment results in Table 3. One interesting observation is that
AdaRank.FB is more effective than AdaRank.MAP, suggest-
ing that the proposed robustness-related measure is better
than MAP as an objective function to improve pseudo feed-

back: one possible explanation is that the average precision
does not work well to indicate the room for improvement of
a query, so focusing on queries with lower average precision
may not be a good strategy to fully exploit the potential
of different queries; however, our new measure would be
able to capture more precisely the potential room of a query
through comparing its performance with the baseline perfor-
mance. Moreover, we also see that FeedbackBoost is clearly
better than AdaRank.FB, though they use similar objective
functions, sugggesting that our optimization framework is
more effective for pseudo feedback.

We finally compare FeedbackBoost with a state-of-the-art
feedback method, REXP-FB [7], which attempted to reduce
failures of pseudo feedback but was only able to optimize
an indirect objective function. They also used Terabyte and
Robust04 as their test collections. So we used a 3-fold (701-
750, 751-800, and 801-850) and a 2-fold (301-450 and 601-
700) cross validation method to evaluate FeedbackBoost on
the whole Terabyte and Robust04 topics respectively in or-
der to compare with their reported numbers. In this com-
parison, we use the same collection and parameter settings
as were used in [7]. The comparison is reported in Table 4.

There are clear performance improvements of our baseline
runs (NoFB-2) over theirs (NoFB-1), probably because we
use a latest version of Indri search engine (2.10) 1. We still
can see that, in terms of relative improvements, BoostMM
performs similarly to REXP-FB, although REXP-FB used a
lot of constraints to improve the selection of expansion terms
while we only use the default term weighting. However, the
most interesting observation is from the comparison of RI,
which may be more comparable across systems. We can
see that our algorithms achieve a significantly higher RI in
all cases, even though our baseline run is even harder to
beat. This finding confirms the conclusion in [18] that doc-
ument weighting plays a key role in affecting the robustness
of feedback. Furthermore, it suggests that our way of di-
rectly optimizing robustness indeed works more effectively.

7.2 Robustness Histograms
To examine in details how badly queries are hurt by a

pseudo feedback algorithm, we show in Figure 2 the robust-
ness histograms by combining two test sets (query 651-701
and query 801-850). The x-axis represents the individual
APloss in percentage (i.e., [E(q) − E(ϕ(q))]/E(q), where ϕ is

1http://www.lemurproject.org/

 0

 2

 4

 6

 8

 10

 12

 14

10 20 30 40 50 60 70 80 90 100 >100

N
um

be
r

of
 Q

ue
rie

s

Percent AP loss

SMM
BoostMM

 0

 2

 4

 6

 8

 10

 12

 14

 16

10 20 30 40 50 60 70 80 90 100 >100

N
um

be
r

of
 Q

ue
rie

s

Percent AP loss

RM3
BoostRM

 0

 2

 4

 6

 8

 10

 12

 14

 16

10 20 30 40 50 60 70 80 90 100 >100

N
um

be
r

of
 Q

ue
rie

s

Percent AP loss

SMM
BoostMM

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

10 20 30 40 50 60 70 80 90 100 >100

N
um

be
r

of
 Q

ue
rie

s

Percent AP loss

RM3
BoostRM

Figure 2: Histograms that compare robustness of
SMM vs BoostMM (first and third) and RM3 vs
BoostRM (second and fourth) on the combination
of two test sets. 20 (50) feedback documents are
used in the left (right) two histograms respectively.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 10 20 30 40 50 60 70 80 90 100

A
P

lo
ss

number of rounds

BoostMM
BoostRM

Figure 5: Sensitivity of BoostMM and BoostRM to
the iteration number on Robust04 validate set.

the corresponding feedback method) for individual failure
queries, and the y-axis stands for the number of queries with
the corresponding percentage APloss. We can see that for
the worst cases, where a query’s AP is decreased by more
than 40%, both BoostMM and BoostRM perform much bet-
ter than SMM and RM3 respectively. It suggests that the
proposed FeedbackBoost algorithm indeed concentrates more
on difficult queries that are hurt seriously by baseline feed-
back methods, i.e., SMM and RM3, and the significant re-
duction of APloss and improvement of RI shown in Table 2
could be mainly due to the elimination of those worst cases.

7.3 Parameter Sensitivity
Usually there is a tradeoff between robustness and effec-

tiveness: if we use a smaller feedback coefficient α, there
would be fewer feedback failures, but we may not fully im-
prove the effectiveness; if we increase this α to some ap-
propriate value, the overall retrieval precision could be opti-
mized, which, however, may lead to more feedback failures.
Although we have shown that FeedbackBoost improves both
robustness and effectiveness at the same time, we are still
interested in how the performance of FeedbackBoost inter-
acts with α (where α in FeedbackBoost is used to control
the feedback interpolation of each basis feedback method in-
volved.) We thus draw the sensitivity curves for Feedback-
Boost in terms of the percentage MAP degradation and the

overall MAP improvement in Figure 3 and 4 respectively.
The percentage MAP degradation is essentially the relative
APloss, i.e., APloss/[

∑|Q|
i E(qi)]; the overall MAP improve-

ment of ϕ is defined as [
∑|Q|

i E(ϕ(qi))]/[
∑|Q|

i E(qi)] − 1.0. We
use 50 feedback documents in all curves. The curves clearly
show that FeedbackBoost consistently improves the robust-
ness and effectiveness over two baseline algorithms. Addi-
tionally, our algorithm is also less sensitive to α in both
curves, and setting α around 0.8 often leads to a large im-
provement in precision with only a small amount of failures.

Finally, we show in Figure 5 the curves of performance
changes as we increase the iteration number T . We see that
the APloss decreases steadily and quickly as the training
goes on, until it reaches its plateau. In our experiments, we
can usually find the best parameter T within 100 rounds.

8. CONCLUSIONS
In this paper, we propose a novel learning algorithm, Feed-

backBoost, based on the boosting framework to improve
pseudo feedback. A major contribution of our work is to op-
timize pseudo feedback based on a novel loss function that
directly measures both robustness and effectiveness, which
has not been achieved in any previous work.

The experiment results show that the proposed Feedback-
Boost algorithm can improve average precision effectively
and meanwhile reduce the number and magnitude of feed-
back failures dramatically as compared to two representa-
tive pseudo feedback methods based on language models,
the mixture model and the relevance model. We also com-
pare our algorithm with a recently proposed robust feedback
method, and the results show that our method is more ro-
bust. In addition, we compare FeedbackBoost with a well-
performing learning to rank approach applied for pseudo
feedback and observe that FeedbackBoost works clearly bet-
ter. These results show that the proposed FeedbackBoost is
more effective and robust than any of the existing method
for pseudo feedback, including both traditional pseudo feed-
back methods and new learning-based approaches.

Our work can be extended in several ways. First, in our
current work, we only use basis feedback methods with dif-
ferent document weighting strategies, so a straightforward
future work is to also introduce term weighting methods to
construct a larger set of basis feedback methods. Second, we
are also interested in combining even more recently proposed
pseudo feedback algorithms, e.g., [2, 28, 7, 20], and other
families of feedback methods, e.g., [24, 22], to diversify our
basis feedback methods. Third, personalized search is an-
other scenario which shares similar effectiveness-robustness
tradeoff issues; thus it is also interesting to improve person-
alized search by exploring the FeedbackBoost framework.

9. ACKNOWLEDGMENTS
We thank the anonymous reviewers for their useful com-

ments. This material is based upon work supported by
the National Science Foundation under Grant Numbers IIS-
0713581 and CNS-1028381. The first author is also sup-
ported by a Yahoo! Key Scientific Challenge Award.

10. REFERENCES
[1] N. Abdul-Jaleel, J. Allan, W. B. Croft, F. Diaz, L. Larkey,

X. Li, D. Metzler, M. D. Smucker, T. Strohman, H. Turtle, and
C. Wade. Umass at trec 2004: Novelty and hard. In TREC ’04,
2004.

 0

 5

 10

 15

 20

 0 0.2 0.4 0.6 0.8 1

P
er

ce
nt

 M
A

P
 lo

ss

Feedback coefficient α

BoostMM vs. SMM on Robust04

SMM
BoostMM

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.2 0.4 0.6 0.8 1

P
er

ce
nt

 M
A

P
 lo

ss

Feedback coefficient α

BoostRM vs. RM3 on Robust04

RM3
BoostRM

 0

 5

 10

 15

 20

 0 0.2 0.4 0.6 0.8 1

P
er

ce
nt

 M
A

P
 lo

ss

Feedback coefficient α

BoostMM vs. SMM on Terabyte

SMM
BoostMM

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.2 0.4 0.6 0.8 1

P
er

ce
nt

 M
A

P
 lo

ss

Feedback coefficient α

BoostRM vs. RM3 on Terabyte

RM3
BoostRM

Figure 3: Sensitivity of the percentage degradation of MAP in failure queries to the feedback coefficient α.
SMM versus BoostMM and RM3 versus BoostRM are shown in the odd and even-number figures respectively.

 0

 5

 10

 15

 20

 0 0.2 0.4 0.6 0.8 1

O
ve

ra
ll

M
A

P
 im

pr
ov

em
en

t

Feedback coefficient α

BoostMM vs. SMM on Robust04

SMM
BoostMM

 0

 5

 10

 15

 20

 0 0.2 0.4 0.6 0.8 1

O
ve

ra
ll

M
A

P
 im

pr
ov

em
en

t

Feedback coefficient α

BoostRM vs. RM3 on Robust04

RM3
BoostRM

-20

-15

-10

-5

 0

 5

 10

 15

 0 0.2 0.4 0.6 0.8 1

O
ve

ra
ll

M
A

P
 im

pr
ov

em
en

t
Feedback coefficient α

BoostMM vs. SMM on Terabyte

SMM
BoostMM

-30

-25

-20

-15

-10

-5

 0

 5

 10

 0 0.2 0.4 0.6 0.8 1

O
ve

ra
ll

M
A

P
 im

pr
ov

em
en

t

Feedback coefficient α

BoostRM vs. RM3 on Terabyte

RM3
BoostRM

Figure 4: Sensitivity of the average improvement of MAP in all queries to the feedback coefficient α. SMM
versus BoostMM and RM3 versus BoostRM are shown in the odd and even-number figures respectively.

[2] G. Amati, C. Carpineto, and G. Romano. Query difficulty,
robustness, and selective application of query expansion. In
ECIR ’04, pages 127–137, 2004.

[3] C. Buckley, G. Salton, J. Allan, and A. Singhal. Automatic
query expansion using smart: Trec 3. In TREC ’94, pages
69–80, 1994.

[4] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds,
N. Hamilton, and G. Hullender. Learning to rank using
gradient descent. In ICML ’05, pages 89–96, 2005.

[5] G. Cao, J.-Y. Nie, J. Gao, and S. Robertson. Selecting good
expansion terms for pseudo-relevance feedback. In SIGIR,
pages 243–250, 2008.

[6] Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li. Learning to
rank: from pairwise approach to listwise approach. In
Proceedings of ICML, pages 129–136, 2007.

[7] K. Collins-Thompson. Reducing the risk of query expansion via
robust constrained optimization. In CIKM ’09, pages 837–846,
2009.

[8] Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer. An efficient
boosting algorithm for combining preferences. J. Mach. Learn.
Res., 4:933–969, 2003.

[9] Y. Freund and R. E. Schapire. A decision-theoretic
generalization of on-line learning and an application to
boosting. In EuroCOLT ’95, pages 23–37, London, UK, 1995.
Springer-Verlag.

[10] D. Harman and C. Buckley. The nrrc reliable information
access (ria) workshop. In SIGIR ’04, pages 528–529, 2004.

[11] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of
Statistical Learning. Springer, 2009.

[12] B. He and I. Ounis. Finding good feedback documents. In
CIKM ’09, pages 2011–2014, 2009.

[13] T. Joachims. Optimizing search engines using clickthrough
data. In Proceedings of the ACM KDD 2002, pages 133–142,
2002.

[14] J. D. Lafferty and C. Zhai. Document language models, query
models, and risk minimization for information retrieval. In
SIGIR ’01, pages 111–119, 2001.

[15] V. Lavrenko and W. B. Croft. Relevance-based language
models. In SIGIR ’01, pages 120–127, 2001.

[16] T.-Y. Liu. Learning to rank for information retrieval.
Foundations and Trends in Information Retrieval,
3(3):225–331, 2009.

[17] Y. Lv and C. Zhai. Adaptive relevance feedback in information
retrieval. In CIKM ’09, 2009.

[18] Y. Lv and C. Zhai. A comparative study of methods for
estimating query language models with pseudo feedback. In
Proceedings of CIKM ’09, 2009.

[19] Y. Lv and C. Zhai. Positional language models for information
retrieval. In SIGIR ’09, pages 299–306, 2009.

[20] Y. Lv and C. Zhai. Positional relevance model for
pseudo-relevance feedback. In SIGIR ’10, pages 579–586, 2010.

[21] J. M. Ponte and W. B. Croft. A language modeling approach to
information retrieval. In SIGIR ’98, pages 275–281, 1998.

[22] S. E. Robertson and K. S. Jones. Relevance weighting of search
terms. JASIS, 27(3):129–146, 1976.

[23] S. E. Robertson, S. Walker, S. Jones, M. Hancock-Beaulieu,
and M. Gatford. Okapi at trec-3. In TREC ’94, pages 109–126,
1994.

[24] J. J. Rocchio. Relevance feedback in information retrieval. In
In The SMART Retrieval System: Experiments in Automatic
Document Processing, pages 313–323. Prentice-Hall Inc., 1971.

[25] G. Salton and C. Buckley. Improving retrieval performance by
relevance feedback. JASIS, 41(4):288–297, 1990.

[26] R. E. Schapire and Y. Singer. Improved boosting algorithms
using confidence-rated predictions. In COLT’ 98, pages 80–91,
1998.

[27] N. Soskin, O. Kurland, and C. Domshlak. Navigating in the
dark: Modeling uncertainty in ad hoc retrieval using multiple
relevance models. In ICTIR ’09, pages 79–91, 2009.

[28] T. Tao and C. Zhai. Regularized estimation of mixture models
for robust pseudo-relevance feedback. In SIGIR ’06, pages
162–169, 2006.

[29] T. Tao and C. Zhai. An exploration of proximity measures in
information retrieval. In SIGIR ’07, pages 295–302, 2007.

[30] J. Xu and H. Li. Adarank: a boosting algorithm for
information retrieval. In SIGIR ’07, pages 391–398, 2007.

[31] C. Zhai and J. D. Lafferty. Model-based feedback in the
language modeling approach to information retrieval. In CIKM
’01, pages 403–410, 2001.

[32] C. Zhai and J. D. Lafferty. A study of smoothing methods for
language models applied to ad hoc information retrieval. In
SIGIR ’01, pages 334–342, 2001.

[33] Z. Zheng, K. Chen, G. Sun, and H. Zha. A regression
framework for learning ranking functions using relative
relevance judgments. In SIGIR ’07, pages 287–294, 2007.

